Circuit Design and CAD for System Applications of Silicon-Based Quantum-Effect Devices
硅基量子效应器件系统应用的电路设计和CAD
基本信息
- 批准号:0114971
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-09-01 至 2006-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Semiconductor Industries Association (SIA) projects that the accrued benefits of the device shrinking era will continue for another decade or so, until feature sizes reach their ultimate limit of around 70 nm. Beyond then, during the post-shrinking era, newer electronic, photonic and molecular technologies must emerge to push the demands for higher system integration on a chip (SOC) and lower energy dissipation. At the present time, substantial research initia-tive focused on quantum-effect devices has demonstrated that these devices offer the best solution for next generation high-performance integrated circuits. Simulation results have shown that circuits designed using resonant-tunneling diodes (RTDs) and complementary metal-oxide-semiconductor (CMOS) transistors can offer an order of magnitude improvement in area-power-delay performance over conventional CMOS. These circuits alleviate the performance saturation that will limit conventional technologies due to diminishing returns from device- and feature-size scaling. While RTDs have been demonstrated for niche small-scale, high-speed ( 40 GHz) circuit applications using III-V process technology, no system-level designs have been fabricated that use RTD-based circuit design. The disadvantage of III-V technology is higher power dissipation and very low integration levels as compared to CMOS. However, the unique negative differential-resistance (NDR) characteristics of RTDs coupled with their high tunneling speeds lead to very compact and fast circuit topologies. Thus it is very attractive to envision these compact, high-functionality circuits implemented in a technology such as CMOS that offers low power dissipation and very large integration lev-els. Also, while transport properties of quantum-effect devices are substantially different from conventional devices, their fabrication and processing framework can be considered an extension of the current state-of-the-art, rather than a radical departure. This makes it possible to envision a synergism between conventional and quantum-effect circuits that will bridge the transition to giga-scale integration and beyond.Quantum electronic devices such as double-barrier resonant tunneling diodes and transistors offer the promise of increased speed and circuit compaction. However, the folded 1-V or negative differential resistance (NDR) charac-teristic of these devices implies that conventional circuit design techniques are not adequate to tackle the problem of optimal circuit design using these devices. Preliminary work, using ad-hoc circuit design techniques, has demonstrated the possibility of building innovative, ultrafast and compact circuits using resonant tunneling devices. This proposal seeks to develop the theory of circuit design using quantum-effect devices, to design accurate and fast circuit simu-lation models and algorithms for the quantum-effect devices, and to study system-level issues in the design of large computational, communication system, and signal processing circuits using quantum-effect devices.The proposed work is divided into three tasks. In the first task, circuit simulation models and algorithms will be developed for quantum-effect resonant tunneling devices. These models, based on values obtained from quantum simulation, and other physics-based models, will be enhanced with algorithms to ensure the convergence of table-driven simulation. In the second task, essential circuit theory for quantum-effect circuits will be developed. This will include stability analysis and optimization techniques for bistable and combinational logic circuits using quantum-effect devices. In the third task, the basic circuit techniques developed in the second task will be applied to the design of nanopipelined and multiple-valued logic systems using quantum-effect devices. The simulation work done in the first task will be used for performance projection of system-level application of quantum-effect devices. Circuit fabrication for QMOS prototypes will be carried out to demonstrate the advantages of the new technology.
半导体工业协会(SIA)预计,器件缩小时代的累积效益将持续10年左右,直到特征尺寸达到70纳米左右的最终极限。除此之外,在后收缩时代,必须出现更新的电子,光子和分子技术,以推动对更高系统集成芯片(SOC)和更低能耗的需求。目前,对量子效应器件的大量研究表明,这些器件为下一代高性能集成电路提供了最佳解决方案。仿真结果表明,采用谐振隧道二极管(rtd)和互补金属氧化物半导体(CMOS)晶体管设计的电路可以提供一个数量级的面积功率延迟性能比传统的CMOS。这些电路缓解了性能饱和,这将限制传统技术,因为设备和功能尺寸缩放的回报递减。虽然rtd已经被证明适用于小型、高速(40 GHz)电路应用,但目前还没有采用基于rtd的电路设计的系统级设计。与CMOS相比,III-V技术的缺点是更高的功耗和非常低的集成水平。然而,rtd独特的负差分电阻(NDR)特性加上它们的高隧道速度导致非常紧凑和快速的电路拓扑结构。因此,设想这些紧凑、高功能的电路在CMOS等技术中实现是非常有吸引力的,这些技术提供了低功耗和非常大的集成水平。此外,虽然量子效应器件的输运特性与传统器件有很大不同,但它们的制造和加工框架可以被认为是对当前最先进技术的延伸,而不是彻底的背离。这使得设想传统电路和量子效应电路之间的协同作用成为可能,这将架起过渡到千兆级集成和超越的桥梁。量子电子器件,如双势垒共振隧道二极管和晶体管,提供了提高速度和电路压缩的希望。然而,这些器件的折叠1-V或负差分电阻(NDR)特性意味着传统的电路设计技术不足以解决使用这些器件的最佳电路设计问题。初步工作,使用特设电路设计技术,已经证明了使用谐振隧道器件构建创新,超快和紧凑电路的可能性。本提案旨在发展利用量子效应器件的电路设计理论,为量子效应器件设计准确、快速的电路仿真模型和算法,并研究利用量子效应器件设计大型计算、通信系统和信号处理电路中的系统级问题。建议的工作分为三个任务。在第一项任务中,将开发量子效应谐振隧道器件的电路仿真模型和算法。这些基于量子模拟和其他基于物理的模型的模型将通过算法进行增强,以确保表驱动模拟的收敛性。在第二项任务中,将发展量子效应电路的基本电路理论。这将包括稳定性分析和优化技术双稳态和组合逻辑电路使用量子效应器件。在第三项任务中,第二项任务中开发的基本电路技术将应用于使用量子效应器件设计纳米管道和多值逻辑系统。在第一个任务中所做的模拟工作将用于量子效应器件系统级应用的性能预测。将进行QMOS原型的电路制造,以展示新技术的优势。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pinaki Mazumder其他文献
Ka-band relativistic diffraction generator with a tapered coaxial Bragg reflector
带有锥形同轴布拉格反射器的 Ka 波段相对论衍射发生器
- DOI:
10.1063/1.4998208 - 发表时间:
2017-11 - 期刊:
- 影响因子:1.6
- 作者:
Feng Lan;Ziqiang Yang;Pinaki Mazumder;Zongjun Shi - 通讯作者:
Zongjun Shi
Terahertz dual-polarization beam splitter via an anisotropic matrix metasurface
通过各向异性矩阵超表面的太赫兹双偏振分束器
- DOI:
10.1109/tthz.2019.2927890 - 发表时间:
2019 - 期刊:
- 影响因子:3.2
- 作者:
Hongxin Zeng;Yaxin Zhang;Feng Lan;Shixiong Liang;Lan Wang;Tianyang Song;Ting Zhang;Zongjun Shi;Ziqiang Yang;Xue Kang;Xilin Zhang;Pinaki Mazumder;Daniel M.Mittleman - 通讯作者:
Daniel M.Mittleman
Technology and layout-related testing of static random-access memories
- DOI:
10.1007/bf00972519 - 发表时间:
1994-11-01 - 期刊:
- 影响因子:1.300
- 作者:
Kanad Chakraborty;Pinaki Mazumder - 通讯作者:
Pinaki Mazumder
Enhanced quadruple-resonant terahertz metamaterial with asymmetric hybrid resonators
具有不对称混合谐振器的增强型四谐振太赫兹超材料
- DOI:
10.1016/j.optmat.2017.11.011 - 发表时间:
2018 - 期刊:
- 影响因子:3.9
- 作者:
Minglei Shi;Feng Lan;Pinaki Mazumder;Mahdi Aghadjani;Ziqiang Yang;Lin Meng;Jun Zhou - 通讯作者:
Jun Zhou
Dynamic Pinning Synchronization of Fuzzy-dependent-switched Coupled Memristive Neural Networks with Mismatched Dimensions on Time Scales
时间尺度上尺寸不匹配的模糊相关切换耦合忆阻神经网络的动态钉扎同步
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:11.9
- 作者:
Xiangxiang Wang;Yongbin Yu;Jingye Cai;Shouming Zhong;Nijing Yan;Kaibo Shi;Pinaki Mazumder;Nyima Tashi - 通讯作者:
Nyima Tashi
Pinaki Mazumder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pinaki Mazumder', 18)}}的其他基金
SHF: Small: THz surface Wave Based Interconnect Technology for Ultra-fast Data Transfer
SHF:小型:基于太赫兹表面波的互连技术,用于超快速数据传输
- 批准号:
1909937 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: A Neurodynamic Programming Approach for the Modeling, Analysis, and Control of Nanoscale Neuromorphic Systems
协作研究:用于纳米级神经形态系统建模、分析和控制的神经动力学编程方法
- 批准号:
1227879 - 财政年份:2012
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
AF: Small: (Nano) Tera Hertz (THz) Plasmonic Technologies for the Beyond Moore's Laws Era
AF:小型:超越摩尔定律时代的(纳米)太赫兹(THz)等离子体技术
- 批准号:
1116040 - 财政年份:2011
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
EAGER:Proof-of -concept demonstration of a novel device that controls propagation of electromagnetic waves
EAGER:控制电磁波传播的新型设备的概念验证演示
- 批准号:
1059177 - 财政年份:2010
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
SHF: Small: Fusion of Quantum Dot/Nanowire Based Sensors and Processors in Ultra-low-energy, Distributed-Intelligence Sensing Network
SHF:小型:超低能耗分布式智能传感网络中基于量子点/纳米线的传感器和处理器的融合
- 批准号:
1017143 - 财政年份:2010
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
EAGER: Software Development for Simulation and Optimization of Nanoscale Integrated Circuits
EAGER:纳米级集成电路仿真和优化的软件开发
- 批准号:
0949667 - 财政年份:2009
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: Modeling, Simulation, Circuit Design, Logic Synthesis, Testing and Defect Tolerance of Resonant Tunneling Device Based Nanotechnology
合作研究:基于纳米技术的谐振隧道器件的建模、仿真、电路设计、逻辑综合、测试和缺陷容限
- 批准号:
0429265 - 财政年份:2004
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Testing of High-Density VLSI Random-Access Memories
高密度 VLSI 随机存取存储器的测试
- 批准号:
9710183 - 财政年份:1997
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
GOALI: Theory, Design and Simulation of Ultrafast Digital Circuits Using Quantum Electronic NDR Devices
GOALI:使用量子电子 NDR 设备的超快数字电路的理论、设计和仿真
- 批准号:
9618417 - 财政年份:1997
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
在噪声和约束条件下的unitary design的理论研究
- 批准号:12147123
- 批准年份:2021
- 资助金额:18 万元
- 项目类别:专项基金项目
相似海外基金
CISE-ANR: HCC: Small: Learning to Translate Freehand Design Drawings into Parametric CAD Programs
CISE-ANR:HCC:小型:学习将手绘设计图转换为参数化 CAD 程序
- 批准号:
2315354 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: End-usser Programming for CAD Systems via Language Design and Synthesis
协作研究:FMitF:第一轨:通过语言设计和综合进行 CAD 系统的最终用户编程
- 批准号:
2219865 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
AdaptiveCAD: Shifting CAD Paradigm for Innovative and Creative Design
AdaptiveCAD:转变 CAD 范式以实现创新和创意设计
- 批准号:
RGPIN-2019-07048 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
POSE: Phase I: Establishing an Ecosystem for Open-source Educational Computer Aided Design (CAD) Models
POSE:第一阶段:建立开源教育计算机辅助设计 (CAD) 模型的生态系统
- 批准号:
2229627 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: End-usser Programming for CAD Systems via Language Design and Synthesis
协作研究:FMitF:第一轨:通过语言设计和综合进行 CAD 系统的最终用户编程
- 批准号:
2219864 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
AdaptiveCAD: Shifting CAD Paradigm for Innovative and Creative Design
AdaptiveCAD:转变 CAD 范式以实现创新和创意设计
- 批准号:
RGPIN-2019-07048 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
AdaptiveCAD: Shifting CAD Paradigm for Innovative and Creative Design
AdaptiveCAD:转变 CAD 范式以实现创新和创意设计
- 批准号:
RGPIN-2019-07048 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
DF/CAD: Computer-Aided Design Tools for the Age of Digital Fabrication
DF/CAD:数字制造时代的计算机辅助设计工具
- 批准号:
RGPIN-2017-05602 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual
Establishment of optimal prostheses design and manufacturing parameters in next-generation CAD/CAM systems
在下一代 CAD/CAM 系统中建立最佳假肢设计和制造参数
- 批准号:
20K10043 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AdaptiveCAD: Shifting CAD Paradigm for Innovative and Creative Design
AdaptiveCAD:转变 CAD 范式以实现创新和创意设计
- 批准号:
RGPIN-2019-07048 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Discovery Grants Program - Individual