Statistical Field Theories and Collective Phenomena
统计场论和集体现象
基本信息
- 批准号:0118213
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-01 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0118213KardarThis grant supports research and education aimed at understanding static and dynamic fluctuation phenomena in polymers, gels, flux lines, surfaces, complex fluids, and social networks. Field theory and numerical methods, e.g. Monte Carlo simulation, will be used to extract universal features of these interacting systems. New theoretical methods may be developed in the course of the work. Research will focus on several specific questions: Are knots and entanglements in polymers such as DNA localized by energy or entropy effects on shorter segments? How are fluctuations modified in the vicinity of a deformed surface, and can they be used to provide indirect information about deformations? Can we describe the emergence of patterns in biological systems (cortical maps, cell motility, and structural constructs from molecular motors and microtubules) by continuum field equations, and what do we learn from such modeling? What is the interplay of order and fluctuations in the non-equilibrium contexts of growing films and drifting lattices? Can simple biological systems be mimicked by imprinting desired information in seemingly random gels at the molecular level?%%%This grant supports fundamental theoretical research and education in an area of statistical physics dealing with static and dynamic fluctuation phenomena in polymers, gels, flux lines, surfaces, complex fluids, biological systems, and social networks. The PI will use advanced theoretical techniques to address specific questions involving equilibrium and nonequilibrium phenomena in polymer physics, film and crystal growth, cortical maps, and molecular biology. Students will be trained in advanced theoretical methods for statistical physics and their applications to a wide range of systems including biological systems.***
0118213卡达尔这笔赠款支持旨在了解聚合物、凝胶、熔剂线、表面、复杂流体和社会网络中的静态和动态波动现象的研究和教育。场论和数值方法,如蒙特卡罗模拟,将被用来提取这些相互作用系统的普遍特征。在这项工作的过程中可能会发展出新的理论方法。研究将集中在几个具体的问题上:聚合物(如DNA)中的结和纠缠是否因较短片段上的能量或熵效应而局部化?如何修改变形表面附近的波动,以及它们是否可以用来提供有关变形的间接信息?我们能用连续统场方程描述生物系统中出现的模式(皮层图谱、细胞运动和分子马达和微管的结构构造)吗?我们从这样的建模中学到了什么?在生长的薄膜和漂移的晶格的非平衡环境中,秩序和涨落的相互作用是什么?能否通过在分子水平上在看似随机的凝胶中印记所需的信息来模拟简单的生物系统?%这笔拨款支持统计物理领域的基础理论研究和教育,该领域涉及聚合物、凝胶、通量线、表面、复杂流体、生物系统和社会网络中的静态和动态波动现象。PI将使用先进的理论技术来解决涉及聚合物物理、薄膜和晶体生长、皮质图和分子生物学中的平衡和非平衡现象的具体问题。学生将学习统计物理的先进理论方法及其在包括生物系统在内的广泛系统中的应用。*
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mehran Kardar其他文献
Crumpled and collapsed conformation in graphite oxide membranes
氧化石墨膜中的褶皱和坍塌构象
- DOI:
10.1038/355426a0 - 发表时间:
1992-01-30 - 期刊:
- 影响因子:48.500
- 作者:
Xin Wen;Carl W. Garland;Terence Hwa;Mehran Kardar;Etsuo Kokufuta;Yong Li;Michal Orkisz;Toyoichi Tanaka - 通讯作者:
Toyoichi Tanaka
Can Viral Geometry Determine B Cell Selection during an Immune Response?
- DOI:
10.1016/j.bpj.2018.11.2270 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Assaf Amitai;Arup Chakraborty;Mehran Kardar - 通讯作者:
Mehran Kardar
Passive Sliders on Growing Surface and (Anti-)Advection in Burger’s Flows
- DOI:
10.1007/s00023-003-0930-1 - 发表时间:
2003-12-01 - 期刊:
- 影响因子:1.300
- 作者:
Barbara Drossel;Mehran Kardar - 通讯作者:
Mehran Kardar
Avalanche theory in rice
水稻中的雪崩理论
- DOI:
10.1038/379022a0 - 发表时间:
1996-01-04 - 期刊:
- 影响因子:48.500
- 作者:
Mehran Kardar - 通讯作者:
Mehran Kardar
Mehran Kardar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mehran Kardar', 18)}}的其他基金
NSF-BSF: Fluctuation phenomena out of equilibrium
NSF-BSF:不平衡的波动现象
- 批准号:
2218849 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
NSF/DMR-BSF: FORCES & FLUCTUATIONS OUT OF EQUILIBRIUM
NSF/DMR-BSF:力量
- 批准号:
1708280 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Statistical Field Theories and Collective Phenomena
统计场论和集体现象
- 批准号:
9805833 - 财政年份:1998
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Static and Dynamic Properties of Surfaces
表面的静态和动态特性
- 批准号:
9303667 - 财政年份:1993
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Static and Dynamic Properties of Surfaces
表面的静态和动态特性
- 批准号:
9001519 - 财政年份:1990
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Static and Dynamic Properties of Surfaces
表面的静态和动态特性
- 批准号:
8620386 - 财政年份:1987
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
新型Field-SEA多尺度溶剂模型的开发与应用研究
- 批准号:21506066
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
- 批准号:
EP/X01276X/1 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Fellowship
Development of tensor renormalization group for lattice field theories rich in internal degrees of freedom
丰富内部自由度晶格场论张量重整化群的发展
- 批准号:
23K13096 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Testing alternative theories of gravity in strong gravitational field by searching for gravitational-wave polarization from compact binary coalescences
通过从致密双星聚结中寻找引力波偏振来测试强引力场中的替代引力理论
- 批准号:
22KJ1650 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Quantum Simulation of Non-Equilibrium Processes in Quantum Field Theories
量子场论中非平衡过程的量子模拟
- 批准号:
22KJ0957 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Dualities in Quantum Field theories and Gravity
量子场论和引力的对偶性
- 批准号:
2894438 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Studentship
LEAPS-MPS: Quantum Field Theories and Elliptic Cohomology
LEAPS-MPS:量子场论和椭圆上同调
- 批准号:
2316646 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Maximising the new physics reach of the LHC through Effective Field Theories
通过有效场论最大化大型强子对撞机的新物理范围
- 批准号:
ST/X004155/1 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Fellowship
Higher-order corrections for effective field theories
有效场论的高阶修正
- 批准号:
2876651 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Studentship
Conformal Field Theories with Higher Spin Symmetry and Duality Invariance
具有更高自旋对称性和对偶不变性的共形场论
- 批准号:
DP230101629 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Discovery Projects