CAREER: Towards Robust and Efficient High-Order Adaptive Computational Methods for Conservation Laws in Complex Geometries -- Analysis, Implementation, and Applications
职业:复杂几何守恒定律的稳健高效高阶自适应计算方法——分析、实现和应用
基本信息
- 批准号:0132967
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of the CAREER effort is to take some important steps towards the development and application of new, adaptive, high-order accurate methods for solving conservation laws. While the technical emphasis will be on efficient implicit time-stepping methods and techniques for local error and regularity estimation, the effort will maintain a focus on large scale, realistic applications from the applied sciences and engineering, and the use of national high performance computing facilities. The complexity of this multidisciplinary task, the development of a computational platform focusing on educational elements, and the fundamental nature of the problems being considered will provide a stimulating environment in which to train future computational scientists in emerging computational techniques for solving conservation laws.Application of basic physical principles of conservation of mass, momentum, and energy has proven itself to lead to accurate and reliable mathematical models of the physical world surrounding us. Such models, known as conservation laws, display a richness, much like the physical world, that continues to challenge developers of computational techniques for solving such problems. The mere universality of such models, however, warrants that new and improved methods be developed to enable the efficient and robust modeling of problems in areas as diverse as the dynamics of fluids and gases, optical communication and high-speed electronics, applications in electromagnetic radiation, or even climate modeling. Hesthaven proposes to develop new adaptive high-order methods for such problems and to train computational scientists in this area.
职业生涯努力的目的是朝着开发和应用新的、自适应的、高精度的方法来解决守恒律问题迈出重要的一步。虽然技术重点将是用于局部误差和正则性估计的高效隐式时间步进方法和技术,但努力将继续侧重于应用科学和工程的大规模、现实应用,以及使用国家高性能计算设施。这项多学科任务的复杂性,一个专注于教育因素的计算平台的开发,以及正在考虑的问题的基本性质,将提供一个激励环境,在其中培训未来的计算科学家解决守恒定律的新兴计算技术。质量、动量和能量守恒的基本物理原理的应用已经证明,它本身导致了我们周围物理世界的准确和可靠的数学模型。这类被称为守恒定律的模型展示了丰富的内容,就像物理世界一样,它继续挑战着解决这类问题的计算技术的开发人员。然而,仅仅是这些模型的普遍性,就需要开发新的和改进的方法,以便能够对各种领域的问题进行高效和健壮的建模,这些领域包括流体和气体动力学、光学通信和高速电子、电磁辐射应用,甚至气候建模。Hesthaven建议为这类问题开发新的自适应高阶方法,并在这一领域培训计算科学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan Hesthaven其他文献
Jan Hesthaven的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jan Hesthaven', 18)}}的其他基金
FRG: Collaborative Research: Developing Spectral Methods for Numerical Solutions of the Einstein Equations
FRG:合作研究:开发爱因斯坦方程数值解的谱方法
- 批准号:
0554377 - 财政年份:2006
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
7th International Conference on Mathematical and Numerical Aspects of Waves (WAVES'05)
第七届波的数学和数值方面国际会议 (WAVES05)
- 批准号:
0456491 - 财政年份:2005
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research ITR/NGS: An Integrated Simulation Environment for High-Resolution Computational Methods in Electromagnetics with Biomedical Applications
合作研究 ITR/NGS:电磁学与生物医学应用高分辨率计算方法的集成仿真环境
- 批准号:
0325110 - 财政年份:2004
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
US-France Cooperative Research (INRIA): Approximate Boundary Conditions for Computational Wave Problems
美法合作研究(INRIA):计算波浪问题的近似边界条件
- 批准号:
0307475 - 财政年份:2003
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
High-Order Embedded Interface Methods for Wave-Problems
波动问题的高阶嵌入式接口方法
- 批准号:
0074257 - 财政年份:2000
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
相似海外基金
ERI: Towards Robust and Secure Intelligent 3D Sensing Systems
ERI:迈向稳健、安全的智能 3D 传感系统
- 批准号:
2347426 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Towards Motion-Robust and Efficient Functional MRI Using Implicit Function Learning
使用内隐功能学习实现运动稳健且高效的功能 MRI
- 批准号:
EP/Y002016/1 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Research Grant
Towards Robust Hydrogen Electrode for High-Rate Alkaline Electrolysis
用于高速率碱性电解的坚固氢电极
- 批准号:
DP230102504 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Discovery Projects
CRII: CNS: Towards Robust and Efficient Dynamic Spectrum Sharing with Knowledge Transfer
CRII:CNS:通过知识转移实现稳健、高效的动态频谱共享
- 批准号:
2245918 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Towards Robust Measurements of H0 with Dark Standard Candles
使用深色标准烛光对 H0 进行稳健测量
- 批准号:
2307026 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Robust, Scalable, and Resilient Radio Fingerprinting
协作研究:SaTC:核心:小型:迈向稳健、可扩展和有弹性的无线电指纹识别
- 批准号:
2225161 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Robust ESG data for biodiversity: towards a spatially-sensitive approach to Sustainable Finance
生物多样性的可靠 ESG 数据:采用空间敏感的可持续金融方法
- 批准号:
NE/X016471/1 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Research Grant
Collaborative Research: CISE-MSI: DP: RI: Towards Scalable, Resilient and Robust Foraging with Heterogeneous Robot Swarms
合作研究:CISE-MSI:DP:RI:利用异构机器人群实现可扩展、有弹性和稳健的觅食
- 批准号:
2318682 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Robust ESG data for biodiversity: towards a spatially-sensitive approach to Sustainable Finance
生物多样性的可靠 ESG 数据:采用空间敏感的可持续金融方法
- 批准号:
NE/X01634X/1 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Research Grant
RUI: Towards Robust Sparsity in Nonuniform Sampling Multidimensional NMR
RUI:非均匀采样多维 NMR 中的鲁棒稀疏性
- 批准号:
2305086 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant