FRG: Collaborative Research: Fully Nonlinear, Three-Dimensional Waves in Water of Arbitrary Depth

FRG:合作研究:任意深度水中的完全非线性三维波

基本信息

  • 批准号:
    0139742
  • 负责人:
  • 金额:
    $ 7.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-08-15 至 2005-07-31
  • 项目状态:
    已结题

项目摘要

The overall objectives of this work are to develop a thorough understanding of three-dimensional water waves of finite amplitude, and ultimately to develop a practical model to describe these waves efficiently. A model that is both accurate and computationally efficient could have many practical applications. Specific problems to be addressed are: (1) the existence and stability of three-dimensional, doubly-periodic, traveling water-wave patterns, through the full range of depths; (2) the prevalence of hexagonal, rectangular or crescent-shaped waves (or other multiply periodic wave patterns) among ocean waves; (3) the long-wave and modulational descriptions of water waves, and the subsequent stability analyses that are feasible in these cases; (4) the design and implementation of algorithms to make practical use of exact solutions of asymptotic models in shallow and deep water; (5) the relation between the detailed dynamics of three-dimensional, nonlinear waves and some commonly used ocean-wave transport models; and (6) the impact of a detailed local description of nonlinear wave dynamics on these transport models, in the presence of large amplitude nonlinear waves or under conditions of nonlinear wave focusing. These problems will be studied using analysis, computation, asymptotics, and algebraic geometry, involving the full equations and approximate models, all in conjunction with state-of-the-art physical experiments.The destructive force of large-amplitude ocean waves is well known. Large-scale ocean waves have a major impact on the design of ocean-going ships, of off-shore oil platforms, and of other structures in a coastal environment. These waves also impact the scheduling and routing of shipping patterns, and they strongly affect air-sea transport processes. Yet most theoretical models of ocean waves now in use are based on waves of small amplitude. In this investigation we focus on developing a thorough understanding of large-amplitude waves. The ultimate goal is to develop a practical, mathematical model that may be used operationally in the applications listed above. In particular, the investigators plan to build on their recent work in which they have observed certain coherent patterns of large-amplitude waves. They have observed these patterns in laboratory experiments, as solutions to the well-known equations of water waves, and as solutions to other equations that are (more) approximate models of water waves. Their work involves a variety of mathematical and computational tools as well as state-of-the-art laboratory experiments. In the present work the investigators will combine all of their tools to understand and describe these coherent patterns and to use them as the building blocks for a practical model of ocean waves.
这项工作的总体目标是发展一个全面的了解三维有限振幅的水波,并最终开发一个实用的模型来有效地描述这些波。一个既准确又计算效率高的模型可以有许多实际应用。要解决的具体问题是:(1)三维,双周期,行波模式的存在和稳定性,通过整个深度范围;(2)六边形,矩形或新月形波的流行(或其他多周期波模式)之间的海洋波浪;(3)水波的长波和调制描述,以及在这些情况下可行的稳定性分析;(4)浅水和深水渐近模型精确解的实际应用算法的设计和实现;(5)三维非线性波浪的详细动力学与一些常用的海浪输运模型之间的关系;(6)在大振幅非线性波或非线性波聚焦条件下,非线性波动力学的局部描述对这些输运模型的影响。这些问题将使用分析,计算,渐近,代数几何,包括完整的方程和近似模型,所有与国家的最先进的物理实验相结合的研究。大尺度海浪对远洋船舶、海上石油平台和沿海环境中的其他结构的设计具有重大影响。 这些海浪还影响航运模式的调度和路线,并强烈影响海空运输过程。然而,现在使用的大多数海浪理论模型都是基于小振幅的波浪。在这项调查中,我们专注于发展一个彻底的了解大振幅波。最终目标是开发一个实用的数学模型,可以在上面列出的应用程序中操作使用。特别是,研究人员计划建立在他们最近的工作中,他们已经观察到某些大振幅波的相干模式。他们在实验室实验中观察到这些模式,作为众所周知的水波方程的解,以及作为其他方程的解,这些方程是(更)近似的水波模型。他们的工作涉及各种数学和计算工具以及最先进的实验室实验。在目前的工作中,研究人员将联合收割机结合他们所有的工具来理解和描述这些连贯的模式,并将它们用作海浪实用模型的构建块。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Harvey Segur其他文献

Integrable models of waves in shallow water
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harvey Segur
  • 通讯作者:
    Harvey Segur

Harvey Segur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Harvey Segur', 18)}}的其他基金

Collaborative Research: Water Waves - Nonlinearity, Dissipation and Forcing
合作研究:水波 - 非线性、耗散和强迫
  • 批准号:
    1716156
  • 财政年份:
    2017
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Water Waves
合作研究:非线性水波
  • 批准号:
    1107354
  • 财政年份:
    2011
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Continuing Grant
Collaborative Research: Nonlinear Dispersive Waves with Weak Dissipation
合作研究:弱耗散非线性色散波
  • 批准号:
    0709415
  • 财政年份:
    2007
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Standard Grant
Nonlinear Wave Motion
非线性波动
  • 批准号:
    9731097
  • 财政年份:
    1998
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Continuing Grant
CISE 1994 Minority Graduate Fellowship Honorable Mention (Richard Charles)
CISE 1994 少数族裔研究生奖学金荣誉奖(理查德·查尔斯)
  • 批准号:
    9422287
  • 财政年份:
    1994
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Wave Motion
数学科学:非线性波动
  • 批准号:
    9304390
  • 财政年份:
    1993
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Asymptotics Beyond All Orders
数学科学:超越所有阶数的渐近学
  • 批准号:
    9010990
  • 财政年份:
    1991
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research in Nonlinear Wave Motion
数学科学:非线性波动研究
  • 批准号:
    8822444
  • 财政年份:
    1989
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research in Nonlinear Wave Motion
数学科学:非线性波动研究
  • 批准号:
    9096156
  • 财政年份:
    1989
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Periodic Waves in Shallow Water
SBIR 第一阶段:浅水中的周期性波
  • 批准号:
    8560589
  • 财政年份:
    1986
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了