RUI: Truncated Multivariable Moment Problems & Applications: An Operator Theoretic Approach
RUI:截断多变量矩问题
基本信息
- 批准号:0201430
- 负责人:
- 金额:$ 8.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2005-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Lawrence A. Fialkow, SUNY New PaltzDMS-0201430 AbstractThis research concerns an approach to the multidimensional truncated power moment problem based on an extension theory for the associated moment matrix. When this matrix admits an infinite, positive, finite rank moment matrix extension, this approach yields an explicit formula for a finitely atomic representing measure supported on the joint spectrum of a normal tuple of operators corresponding to the extension. The aim of this research is to determine concrete conditions on the moment data which permit the desired extension. Much of this research concerns, specifically, the multivariable truncated K-moment problem, where the support of a representing measure is required to be contained in a prescribed closed set K. For K an algebraic variety, this research concerns a new conjecture for solving the moment problem in terms of concrete algebraic and geometric invariants closely related to the moment data. For K semi-algebraic, this research seeks to apply the abstract solution of the truncated K-moment problem due to Curto-Fialkow to specific semi-algebraic sets such as the closed unit disk. A direct application of this study concerns the multidimensional cubature problem in Numerical Analysis. By applying the moment matrix extension technique in the context of cubature, this research seeks to construct minimal cubature rules for sets such as the disk, square, triangle, or annulus.One aspect of this research, the Quadrature Problem, concerns the efficient measurement of the size of an irregular area, or the measurement of the weight of a volume whose density is unevenly distributed. We seek to identify a small number of test points (or nodes) within the body in such a way that by measuring the density just at these few points, we may closely approximate the overall size or weight of the body. In the case of a linear body, such as a thin rod, the quadrature problem was solved with the fewest number of test points by the mathematician Carl Friedrich Gauss (1777-1855), using a technique now known as Gaussian Quadrature. At the present time, surprisingly few minimal-node quadrature rules are known for shapes in the plane or in 3-dimensional space, even for basic sets such as a disk or sphere. In order to study the Quadrature Problem, we actually study a more general problem, the Multidimensional Truncated Moment Problem. Many real-world systems can be described by a sequence of physical attributes called moments, such as mass, weight, momentum, etc., which relate to the physical space underlying the system. The truncated moment problem asks whether a system is uniquely determined by its sequence of moments, and also whether the moments of a system can be computed by studying the system at just a finite number of nodes in the underlying space. In this research, we develop algorithms for recognizing when such a sequence of nodes exists, and for efficiently computing them. In this way, we may describe a system in terms of just a finite number of points in the underlying space.
PI:Lawrence A. Fialkow,SUNY New PaltzDMS-0201430 摘要本文基于关联矩矩阵的扩张理论,研究了多维截断幂矩问题。当这个矩阵承认一个无限的,积极的,有限的秩矩矩阵的扩展,这种方法产生一个显式的公式,支持一个正常元组的运营商对应的扩展的联合频谱上的原子表示措施。本研究的目的是确定允许所需扩展的力矩数据的具体条件。这项研究的大部分关注,特别是,多变量截断K-矩问题,其中的支持代表措施需要包含在一个规定的封闭集K。对于代数簇K,本研究涉及一个新的猜想,解决矩问题的具体代数和几何不变量密切相关的时刻数据。对于K半代数,本研究旨在将Curto-Fialkow截断K矩问题的抽象解应用于特定的半代数集,如封闭单位圆盘。本研究的一个直接应用涉及数值分析中的多维体积问题。本研究将矩量矩阵扩展技术应用于体积问题,旨在构造圆盘、正方形、三角形、环形等集合的最小体积规则,其中之一是求积问题,它涉及到对不规则区域的大小的有效测量,或对密度分布不均匀的体积的重量的有效测量。我们试图在身体内识别少量的测试点(或节点),通过测量这几个点的密度,我们可以接近身体的整体大小或重量。在线性物体的情况下,例如细杆,数学家卡尔·弗里德里希·高斯(Carl Friedrich Gauss,1777-1855)使用现在称为高斯求积的技术,用最少的测试点解决了求积问题。目前,令人惊讶的是,很少有最小节点求积规则是已知的形状在平面或3维空间,即使是基本集,如磁盘或球体。为了研究求积问题,我们实际上研究了一个更一般的问题,多维截断矩问题。许多现实世界的系统可以用一系列称为矩的物理属性来描述,如质量、重量、动量等,其涉及系统下面的物理空间。截断矩问题询问一个系统是否由它的矩序列唯一确定,以及是否可以通过研究系统在底层空间中的有限个节点来计算系统的矩。在这项研究中,我们开发的算法识别时,这样的节点序列存在,并有效地计算它们。这样,我们就可以用底层空间中的有限个点来描述一个系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lawrence Fialkow其他文献
Abolishment of HLA Allosensitization in Ventricular Assist Device Recipients Transfused with Leukoreduced, ABO Identical Blood Products
- DOI:
10.1016/j.cardfail.2007.06.448 - 发表时间:
2007-08-01 - 期刊:
- 影响因子:
- 作者:
Myra Coppage;Marc L. Baker;Leway Chen;Lawrence Fialkow;Kelly Gettings;Danielle Meehan;H. Todd Massey;Neil Blumberg - 通讯作者:
Neil Blumberg
Lawrence Fialkow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lawrence Fialkow', 18)}}的其他基金
RUI: Truncated Multivariable Moment Problems & Applications: An Operator Theoretic Approach
RUI:截断多变量矩问题
- 批准号:
0758378 - 财政年份:2008
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
RUI: Truncated Multivariable Moment Problems & Applications: An Operator Theoretic Approach
RUI:截断多变量矩问题
- 批准号:
0457138 - 财政年份:2005
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
RUI: Truncated Multivariable Moment Problems and Application: An Operator Theorectic Approach
RUI:截断多变量矩问题及应用:算子理论方法
- 批准号:
9800805 - 财政年份:1998
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
Mathematical Sciences: RUI: Research on Operators in Hilbert Space
数学科学:RUI:希尔伯特空间算子研究
- 批准号:
9400566 - 财政年份:1994
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
Mathematical Sciences: Research on Operators in Hilbert Space
数学科学:希尔伯特空间算子研究
- 批准号:
9200609 - 财政年份:1992
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
Mathematical Sciences: Research on Operators in Hilbert Space
数学科学:希尔伯特空间算子研究
- 批准号:
9001090 - 财政年份:1990
- 资助金额:
$ 8.75万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research on Operators in Hilbert Space
数学科学:希尔伯特空间算子研究
- 批准号:
8801547 - 财政年份:1988
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
Mathematical Sciences: Research on Operators in HIlbert Space
数学科学:希尔伯特空间算子研究
- 批准号:
8405282 - 财政年份:1984
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
Mathematical Sciences: Research on Operators in Hilbert Space
数学科学:希尔伯特空间算子研究
- 批准号:
8301472 - 财政年份:1983
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
相似国自然基金
星形胶质细胞HSP60-NF κB-truncated-BDNF信号通路调节神经元功能参与抑郁症的机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
HSP60调节NFκB/S1P/truncated-BDNF信号通路参与抑郁症的机制研究
- 批准号:82301717
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Metabolic Effects on Immune Response of TFAM Truncated Colorectal Cancer
TFAM 截短结直肠癌的代谢对免疫反应的影响
- 批准号:
495193 - 财政年份:2023
- 资助金额:
$ 8.75万 - 项目类别:
Targeting GALNT7 and truncated O-glycans for improved treatment of prostate cancer
靶向 GALNT7 和截短的 O-聚糖以改善前列腺癌的治疗
- 批准号:
2884922 - 财政年份:2023
- 资助金额:
$ 8.75万 - 项目类别:
Studentship
Analysis of Alzheimer's disease studies that feature truncated or interval-censored covariates
对具有截断或区间删失协变量的阿尔茨海默病研究的分析
- 批准号:
10725225 - 财政年份:2023
- 资助金额:
$ 8.75万 - 项目类别:
Convergent evolution of antiviral machinery derived from endogenous retrovirus truncated envelope genes
内源性逆转录病毒截短包膜基因衍生的抗病毒机制的趋同进化
- 批准号:
23H02393 - 财政年份:2023
- 资助金额:
$ 8.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Truncated O-glycan-dependent mechanisms inducing metastatic dissemination in pancreatic cancer
截短的O-聚糖依赖性机制诱导胰腺癌转移扩散
- 批准号:
10683305 - 财政年份:2022
- 资助金额:
$ 8.75万 - 项目类别:
Truncated O-glycan-dependent mechanisms inducing metastatic dissemination in pancreatic cancer
截短的O-聚糖依赖性机制诱导胰腺癌转移扩散
- 批准号:
10503433 - 财政年份:2022
- 资助金额:
$ 8.75万 - 项目类别:
Full-Waveform Inversion of Seismic Input Motions in a Truncated Domain
截断域中地震输入运动的全波形反演
- 批准号:
2044887 - 财政年份:2020
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
Compiling circuits for quantum simulation of quantum chemistry using truncated Taylor series
使用截断泰勒级数编译量子化学的量子模拟电路
- 批准号:
502882-2017 - 财政年份:2019
- 资助金额:
$ 8.75万 - 项目类别:
Postgraduate Scholarships - Doctoral
Full-Waveform Inversion of Seismic Input Motions in a Truncated Domain
截断域中地震输入运动的全波形反演
- 批准号:
1855406 - 财政年份:2019
- 资助金额:
$ 8.75万 - 项目类别:
Standard Grant
The role of the truncated tyrosine kinase receptor B (TrkB.T1) in synaptic regulation
截短的酪氨酸激酶受体 B (TrkB.T1) 在突触调节中的作用
- 批准号:
503929-2017 - 财政年份:2019
- 资助金额:
$ 8.75万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral