Cyclic Plasticity and Fatigue of Ultrafine Grain FCC Metals at Low Plastic Strain Amplitudes

超细晶粒 FCC 金属在低塑性应变幅值下的循环塑性和疲劳

基本信息

  • 批准号:
    0201487
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-09-01 至 2007-08-31
  • 项目状态:
    已结题

项目摘要

Cyclic Plasticity and Fatigue of Ultra Fine Grain FCC Metals at Low Plastic Strain AmplitudesThis project is aimed at achieving a fundamental understanding of low plastic strain amplitude cyclic deformation and fatigue behavior in ultra fine grain FCC metals that have a low initial dislocation density. Ultra fine grain metals are those that have grain diameters in the submicron range, but generally greater than about 10 nm. Such materials are only beginning to be produced in large quantities and little is known about their mechanical behavior relative to conventional grain size materials, but ultra fine grain metals have been shown to exhibit exceptional strength with, in many cases, reasonable ductility. They are generally produced in one of three ways: by inert gas condensation and powder metallurgy, by severe plastic deformation of conventional grain size materials, and by electrodeposition. Materials produced by severe plastic deformation can exhibit both high strength and good ductility, but they have a very high dislocation density, a property that is very important in determining subsequent mechanical behavior. Materials produced by inert gas condensation and powder metallurgy generally exhibit poor ductility - they are somewhat brittle. Only materials produced by electrodeposition have both low dislocation density and exhibit high strength and good ductility. For this reason they offer potential for achieving good fatigue life characteristics relative to conventional grain size materials and ultra fine grain materials produced by other means. Because it is possible to produce large samples of ultra fine grain metals by electrodeposition, there is significant potential for commercial development for structural uses, but more needs to be known about the mechanical properties of these materials. The project will execute a focused experimental program using ultra fine grain nickel produced by electrodeposition. The objectives of the project are to develop and analyze a detailed cyclic plasticity database for ultra fine grain nickel at low plastic strain amplitudes. Fatigue experiments will be performed on specimens produced using electrodeposition of nickel. Various techniques such as optical microscopy, scanning and transmission electron microscopy, and x-ray diffraction will be used for characterizing the materials produced by electrodeposition and for studying the effects of fatigue loading. Additional objectives include the development of an understanding of fatigue crack initiation behavior in ultra fine grain nickel. Fatigue crack initiation is a precursor to the eventual loss of load-carrying capacity.The project will involve at least one graduate student in thesis work that encompasses elements of materials science, electrochemistry, solid mechanics and ferromagnetics. It will also involve undergraduate students, particularly those from underrepresented groups. The results will be disseminated through conference presentations and publications in referred journals and via a website maintained by the principal investigators and their students.
超细晶粒FCC金属在低塑性应变幅下的循环塑性和疲劳本项目旨在实现对具有低初始位错密度的超细晶粒FCC金属的低塑性应变幅循环变形和疲劳行为的基本理解。超细颗粒金属是具有亚微米范围内的颗粒直径,但通常大于约10 nm的那些。这种材料只是开始大量生产,并且对它们相对于常规晶粒尺寸材料的机械行为知之甚少,但是超细晶粒金属已经显示出在许多情况下具有合理延展性的优异强度。它们通常以三种方式之一生产:通过惰性气体冷凝和粉末冶金,通过常规粒度材料的剧烈塑性变形,以及通过电沉积。通过剧烈塑性变形产生的材料可以表现出高强度和良好的延展性,但它们具有非常高的位错密度,这是一种在确定随后的机械行为中非常重要的性质。惰性气体冷凝和粉末冶金生产的材料通常延展性较差--有些脆。只有通过电沉积生产的材料才具有低位错密度和高强度以及良好的延展性。因此,相对于常规粒度材料和通过其他方法生产的超细晶粒材料,它们提供了实现良好疲劳寿命特性的潜力。由于可以通过电沉积生产超细晶粒金属的大样品,因此在结构用途的商业开发方面具有很大的潜力,但需要更多地了解这些材料的机械性能。该项目将使用电沉积法生产的超细颗粒镍执行一项重点实验计划。该项目的目标是开发和分析一个详细的循环塑性数据库超细晶粒镍在低塑性应变幅。疲劳实验将在使用镍电沉积制备的试样上进行。各种技术,如光学显微镜,扫描和透射电子显微镜,和X射线衍射将用于表征电沉积产生的材料和研究疲劳载荷的影响。其他目标包括发展的认识疲劳裂纹萌生行为在超细晶粒镍。疲劳裂纹的产生是最终丧失承载能力的前兆。该项目将涉及至少一名研究生的论文工作,包括材料科学,电化学,固体力学和铁磁学的元素。它还将涉及本科生,特别是那些代表性不足的群体。研究结果将通过会议报告、参考期刊上的出版物以及主要研究者及其学生维护的网站进行传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Moosbrugger其他文献

John Moosbrugger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Moosbrugger', 18)}}的其他基金

REU Site: Nanoscale Science and Engineering for Materials Processing and Systems
REU 网站:材料加工和系统的纳米科学与工程
  • 批准号:
    0453404
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mechanisms of Microstructural Influences on Cyclic Plasticity and Ratchetting: Equipment Supplement
微观结构对循环塑性和棘轮效应的影响机制:设备补充
  • 批准号:
    9821021
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mechanisms of Microstructural Influences on Cyclic Plasticity and Ratchetting
微观结构对循环塑性和棘轮效应的影响机制
  • 批准号:
    9634707
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

A new method for estimating crack growth history using cyclic plasticity near the fatigue crack tip as a parameter
使用疲劳裂纹尖端附近的循环塑性作为参数来估计裂纹扩展历史的新方法
  • 批准号:
    23H01625
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Hybrid Fatigue Life Assessment considering Meso- and Macro-scale Cyclic Plasticity Analysis
考虑细观和宏观尺度循环塑性分析的混合疲劳寿命评估
  • 批准号:
    17H03489
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Fatigue and Cyclic Plasticity Modelling of Forgued Magnesium Alloys
锻造镁合金的疲劳和循环塑性建模
  • 批准号:
    476359-2014
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Industrial Postgraduate Scholarships
Investigation of the dominant mechanics of fatigue crack propagation in freestanding metallic nano-films considering cyclic plasticity
考虑循环塑性的独立式金属纳米薄膜疲劳裂纹扩展的主要力学研究
  • 批准号:
    16H06061
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Fatigue damage and cyclic plasticity assessment of engineering materials under various uniaxial and biaxial loading conditions
各种单轴和双轴加载条件下工程材料的疲劳损伤和循环塑性评估
  • 批准号:
    227597-2011
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Fatigue and Cyclic Plasticity Modelling of Forgued Magnesium Alloys
锻造镁合金的疲劳和循环塑性建模
  • 批准号:
    476359-2014
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Industrial Postgraduate Scholarships
Fatigue and Cyclic Plasticity Modelling of Forgued Magnesium Alloys
锻造镁合金的疲劳和循环塑性建模
  • 批准号:
    476359-2014
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Industrial Postgraduate Scholarships
Fatigue damage and cyclic plasticity assessment of engineering materials under various uniaxial and biaxial loading conditions
各种单轴和双轴加载条件下工程材料的疲劳损伤和循环塑性评估
  • 批准号:
    227597-2011
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Fatigue damage and cyclic plasticity assessment of engineering materials under various uniaxial and biaxial loading conditions
各种单轴和双轴加载条件下工程材料的疲劳损伤和循环塑性评估
  • 批准号:
    227597-2011
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Constitutive modeling and microstructural validation for crystal plasticity finite element computation of cyclic plasticity in fatigue
疲劳循环塑性晶体塑性有限元计算的本构建模和微观结构验证
  • 批准号:
    209460789
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了