Rate of Convergence of Diffusion Processes--Application to Statistical Inference for Processes

扩散过程的收敛率--在过程统计推断中的应用

基本信息

  • 批准号:
    0203823
  • 负责人:
  • 金额:
    $ 10.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-09-01 至 2005-08-31
  • 项目状态:
    已结题

项目摘要

0203823Zheng Let [x(t), 0 t T] be a realized path of a diffusion process with an unknown multi-dimensional parameter u in its coefficients. The Principle Investigator and his students are interested in estimating the real value of u. They discovered that they can define a Maximum Likelihood Estimator U of the unknown u even if u appeared in the diffusion coefficient. They are going to find the rate of convergence of U to the true parameter u under reasonable assumptions when the observation time is relatively long enough. Since in the real applications, x(t) can be only recorded at discrete time spots, they are particularly interested in the problems of error estimates related to discretizations of their models. The Principle Investigator and his students' research has its interests in the real applications. There are many examples of parameter estimates of diffusion processes in the applications. For example, it may be related to the trace of a military missile, or the price of a stock. All those models contain some unknown parameters. Moreover, any observation of the real path contains errors. Assuming that the observation error can be only bounded by a constant c, then no matter how one increases the computation steps in the time discretization method, the error of the estimate can not be significantly reduced beyond some number. In other words, the Principle Investigator and his students will find out the minimum steps needed for a computer to get enough accurate result when an observation error is recognized. This study has its potential military and financial applications.
设[x(t),0 t T]为系数中含有未知多维参数u的扩散过程的实现路径.主要研究者和他的学生对估计u的真实的值感兴趣。他们发现,即使u出现在扩散系数中,他们也可以定义未知u的最大似然估计U。当观测时间相对足够长时,他们将在合理的假设下找到U向真实参数u的收敛速度。由于在真实的应用中,x(t)只能在离散的时间点上被记录,因此他们对与模型离散化有关的误差估计问题特别感兴趣。 主要研究者和他的学生的研究有其利益的真实的应用。扩散过程参数估计的应用实例很多。例如,它可能与军事导弹的踪迹或股票的价格有关。所有这些模型都包含一些未知参数。此外,对真实的路径的任何观测都包含误差。假设观测误差只能由一个常数c限定,那么无论如何增加时间离散化方法的计算步数,估计误差都不能显著减小到某个数值以上。换句话说,主要研究者和他的学生将找出计算机在识别观察错误时获得足够准确结果所需的最小步骤。这项研究具有潜在的军事和金融应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weian Zheng其他文献

Radial Part of Brownian Motion on a Riemannian Manifold
黎曼流形上布朗运动的径向部分
  • DOI:
    10.1214/aop/1176988382
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Liao;Weian Zheng
  • 通讯作者:
    Weian Zheng
Meyer's topology and brownian motion in a composite medium
复合介质中的迈耶拓扑和布朗运动
  • DOI:
    10.1007/bfb0094645
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weian Zheng
  • 通讯作者:
    Weian Zheng
Solutions to a class of multidimensional SPDES
一类多维 SPDES 的解
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrey L. Piatnitski;Huaizhong Zhao;Weian Zheng
  • 通讯作者:
    Weian Zheng
Conditional Propagation of Chaos and a Class of Quasilinear PDE'S
  • DOI:
    10.1214/aop/1176988189
  • 发表时间:
    1995-07
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Weian Zheng
  • 通讯作者:
    Weian Zheng

Weian Zheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weian Zheng', 18)}}的其他基金

Diffusion Processes in Composite Media and Related Problems
复合介质中的扩散过程及相关问题
  • 批准号:
    9625642
  • 财政年份:
    1996
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Precise path analysis of Brownian motions on non-smooth Riemannian manifolds
数学科学:非光滑黎曼流形上布朗运动的精确路径分析
  • 批准号:
    9204038
  • 财政年份:
    1992
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Standard Grant

相似海外基金

NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
  • 批准号:
    2343806
  • 财政年份:
    2024
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Standard Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
  • 批准号:
    2344109
  • 财政年份:
    2024
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
  • 批准号:
    2344472
  • 财政年份:
    2024
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
  • 批准号:
    2344476
  • 财政年份:
    2024
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
  • 批准号:
    2303525
  • 财政年份:
    2024
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
  • 批准号:
    2344357
  • 财政年份:
    2024
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
  • 批准号:
    2344305
  • 财政年份:
    2024
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
  • 批准号:
    2344426
  • 财政年份:
    2024
  • 资助金额:
    $ 10.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了