Mathematical Structure of Blowup Solutions in Inviscid, Incompressible Flow

无粘、不可压缩流中爆破溶液的数学结构

基本信息

  • 批准号:
    0204268
  • 负责人:
  • 金额:
    $ 12.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-08-01 至 2004-07-31
  • 项目状态:
    已结题

项目摘要

This proposal concerns the question of whether some solutions of the equations of incompressible, inviscid fluid flow develop spontaneous singularities in finite time. The objective is to uncover the mathematical structure of possible blowup flows suggested by the PI previous investigations. Two projects are planned. The first will be to use advanced computational techniques to reveal the asymptotic behavior associated with collapse and blowup. Previous work indicates that there exists an inner Leray-type self-similar solution which exhibits a finite-time singularity, a regular outer solution and a matching region of poloidal vorticity. The other project expands upon the observation that all candidate blowup flows found by all investigators have one or more discrete symmetries and can be associated with the finite number of point and space groups. All fluid field variables can be associated with irreducible representations. How the characteristics of the discrete point groups, such as degeneracy, commutivity, associated lattices and space groups effect flow solutions will be explored. The equations that govern the motion of an incompressible fluid, such as water, are routinely used by engineers and scientists for design and research. The most fundamental question about these equations, however, has been open for more than 250 years and reflects directly on the validity of using these equations as a model of fluid flow: whether solutions remain smooth or blowup in finite time. Finding an answer to this question for frictionless flow is addressed in this work. It is a very challenging problem computationally and will be a severe test on modern numerical techniques. Because of its importance, the related viscous problem has been selected as one of seven Clay Millennium prize problems regarded as the Hilbert problems for this century.
这一建议涉及的问题是否不可压缩,无粘流体流动方程的某些解决方案在有限时间内发展自发奇点。其目的是揭示PI以前的调查所建议的可能的爆破流的数学结构。计划了两个项目。第一个将是使用先进的计算技术来揭示与坍缩和爆破相关的渐近行为。前人的工作表明,存在一个具有有限时间奇异性的Leray型自相似内解,一个正则外解和一个极向涡度匹配区域。另一个项目扩展后的观察,所有的候选人爆破流发现的所有调查人员有一个或多个离散的对称性,可以与有限数量的点和空间群。所有流场变量都可以与不可约表示相关联。我们将探讨离散点群的特征,如退化性、交换性、关联格和空间群对流解的影响。控制不可压缩流体(如水)运动的方程通常被工程师和科学家用于设计和研究。然而,关于这些方程的最基本的问题已经公开了250多年,并直接反映了使用这些方程作为流体流动模型的有效性:解在有限时间内是否保持光滑或爆破。在这项工作中解决了这个问题的无摩擦流的答案。这是一个非常具有挑战性的计算问题,也是对现代数值计算技术的严峻考验。由于它的重要性,相关的粘性问题已被选为七个粘土千年奖问题之一,被视为本世纪的希尔伯特问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Norman Zabusky其他文献

Norman Zabusky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Norman Zabusky', 18)}}的其他基金

Mathematical Sciences: Geophysical Wave-and-Vortex Systems: Dynamics, Data Assimilation and Predictability
数学科学:地球物理波涡系统:动力学、数据同化和可预测性
  • 批准号:
    9111869
  • 财政年份:
    1992
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Standard Grant
Visualization and Diagnostics for the Computational Sciencesand Applications to Computational Fluid Dynamics Research
计算科学的可视化和诊断以及计算流体动力学研究的应用
  • 批准号:
    8901900
  • 财政年份:
    1989
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Vortex Dynamics of Coherent and Chaotic Structures (Including Algorithms for Computer Simulation and Diagnosis)
数学科学:相干和混沌结构的涡动力学(包括计算机模拟和诊断算法)
  • 批准号:
    8401710
  • 财政年份:
    1984
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Continuing Grant

相似海外基金

REU Site: Microbial Biofilm Development, Resistance, & Community Structure
REU 网站:微生物生物膜的发展、耐药性、
  • 批准号:
    2349311
  • 财政年份:
    2025
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Continuing Grant
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 12.38万
  • 项目类别:
    EU-Funded
Structure-guided optimisation of light-driven microalgae cell factories
光驱动微藻细胞工厂的结构引导优化
  • 批准号:
    DP240101727
  • 财政年份:
    2024
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Discovery Projects
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
  • 批准号:
    EP/Y027906/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Research Grant
Statistical Foundations for Detecting Anomalous Structure in Stream Settings (DASS)
检测流设置中的异常结构的统计基础 (DASS)
  • 批准号:
    EP/Z531327/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Research Grant
Structure vs Invariants in Proofs (StrIP)
证明中的结构与不变量 (StrIP)
  • 批准号:
    MR/Y011716/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Fellowship
Structure, Dynamics and Activity of Bacterial Secretosome
细菌分泌体的结构、动力学和活性
  • 批准号:
    BB/Y004531/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Research Grant
Understanding the electronic structure landscape in wide band gap metal halide perovskites
了解宽带隙金属卤化物钙钛矿的电子结构景观
  • 批准号:
    EP/X039285/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Standard Grant
CAREER: Understanding Processing-Structure-Property Relationships in Co-Axial Wire-Feed, Powder-Feed Laser Directed Energy Deposition
职业:了解同轴送丝、送粉激光定向能量沉积中的加工-结构-性能关系
  • 批准号:
    2338951
  • 财政年份:
    2024
  • 资助金额:
    $ 12.38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了