Geometry and Topology of Riemannian Manifolds
黎曼流形的几何和拓扑
基本信息
- 批准号:0204671
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-01 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT DMS - 0204671.The principal investigator plans to continue his work on global problems in differential geometry and related areas. Special emphasis will be devoted to the pursuit of global Riemannian geometry via additional structures. This includes but is not limited to structures arising from the presence of symmetries, and to structures arising from taking external or internal limits. Our efforts concerning investigations of relations between curvature, symmetry and topology is guided by the program set forth by the aim: ``Classify or describe the structure of manifolds with positive or nonnegative curvature and large isometry groups". This area is currently experiencing significant advances in various directions. The project will also include investigations of structures arising from the collapse of manifolds under a lower curvature bound, and of metric invariants coming from investigations of the structure of various spaces of finite metric spaces.The significance of the main part of the proposal is twofold. On the one hand there are many geometric situations where no symmetries are present from the outset, but where symmetries emerge non-trivially from the geometry. Among such situations are rigidity problems and collapsing problems under bounded curvature. General results achieved through the work proposed can then be invoked and help solve the original problem, where no symmetries were present. This method has already been used successfully. On the other hand, the proposed work provides a systematic approach for finding new examples of spaces with positive or nonnegative curvature, arguably one the most central and difficult issues facing global Riemannian geometry today.
摘要DMS - 0204671。首席研究员计划继续他在微分几何和相关领域的全球性问题上的工作。特别强调将致力于通过附加结构追求全局黎曼几何。这包括但不限于由于存在对称性而产生的结构,以及由于采取外部或内部限制而产生的结构。我们对曲率、对称和拓扑之间关系的研究工作是由以下目标所设定的程序指导的:“分类或描述具有正曲率或非负曲率和大等距群的流形的结构”。这一领域目前正在各个方向取得重大进展。该项目还将包括研究由低曲率界下流形坍缩引起的结构,以及来自有限度量空间的各种空间结构研究的度量不变量。该提案的主要部分具有双重意义。一方面,有许多几何情况,从一开始就不存在对称性,但对称性从几何中非平凡地出现。其中包括刚度问题和有界曲率下的坍塌问题。然后可以调用通过提出的工作获得的一般结果,并帮助解决不存在对称性的原始问题。这种方法已经被成功地使用过。另一方面,提出的工作提供了一种系统的方法来寻找具有正或非负曲率的空间的新例子,这可以说是当今全球黎曼几何面临的最核心和最困难的问题之一。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karsten Grove其他文献
Guest Editors' Introduction to a Special Issue in Memory of Alfred Gray (1939–1998)
- DOI:
10.1023/a:1006743604698 - 发表时间:
2000-08-01 - 期刊:
- 影响因子:0.700
- 作者:
Karsten Grove;Jonathan Rosenberg - 通讯作者:
Jonathan Rosenberg
Global G-Manifold Reductions and Resolutions
- DOI:
10.1023/a:1006740932080 - 发表时间:
2000-08-01 - 期刊:
- 影响因子:0.700
- 作者:
Karsten Grove;Catherine Searle - 通讯作者:
Catherine Searle
The even dimensional pinching problem and SU(3)/T
- DOI:
10.1007/bf00572449 - 发表时间:
1989-03-01 - 期刊:
- 影响因子:0.500
- 作者:
Karsten Grove - 通讯作者:
Karsten Grove
Karsten Grove的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karsten Grove', 18)}}的其他基金
Bruhat-Tits Geometry and Nonnegative Curvature
Bruhat-Tits 几何和非负曲率
- 批准号:
1509162 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference on Metric Geometry and Applications
度量几何及其应用会议
- 批准号:
1265610 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
The 2013 Graduate Student Topology and Geometry Conference
2013年研究生拓扑与几何会议
- 批准号:
1307681 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Geometry and Topology in the Presence of Lower Curvature Bounds
存在较低曲率界的几何和拓扑
- 批准号:
1209387 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
Workshop on Interactions between Geometry and Analysis
几何与分析之间的相互作用研讨会
- 批准号:
1041141 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Geometry and Topology in the Presence of Lower Curvature Bounds
存在较低曲率界的几何和拓扑
- 批准号:
0941615 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Continuing Grant
Geometry and Topology in the Presence of Lower Curvature Bounds
存在较低曲率界的几何和拓扑
- 批准号:
0706791 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Geometry and Topology of Riemannian Manifolds
黎曼流形的几何和拓扑
- 批准号:
9971648 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Geometry and Topology of Riemannian Manifolds
数学科学:黎曼流形的几何和拓扑
- 批准号:
9626375 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Geometry and Topology of Riemannian Manifolds
数学科学:黎曼流形的几何和拓扑
- 批准号:
9303491 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Quantitative Topology and Extremal Objects in Riemannian Geometry
黎曼几何中的定量拓扑和极值对象
- 批准号:
315010-2005 - 财政年份:2009
- 资助金额:
-- - 项目类别:
University Faculty Award
Quantitative Topology and Extremal Objects in Riemannian Geometry
黎曼几何中的定量拓扑和极值对象
- 批准号:
315010-2005 - 财政年份:2008
- 资助金额:
-- - 项目类别:
University Faculty Award
Differential Geometry and Topology of Riemannian Submanifolds
黎曼子流形的微分几何和拓扑
- 批准号:
0806305 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Quantitative topology and extremal objects in Riemannian geometry
黎曼几何中的定量拓扑和极值对象
- 批准号:
217655-2005 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Quantitative Topology and Extremal Objects in Riemannian Geometry
黎曼几何中的定量拓扑和极值对象
- 批准号:
315010-2005 - 财政年份:2007
- 资助金额:
-- - 项目类别:
University Faculty Award
Curvature-Free Estimates for Extremal Objects in Riemannian Geometry and Quantitative Topology
黎曼几何和定量拓扑中极值对象的无曲率估计
- 批准号:
0604113 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
Quantitative topology and extremal objects in Riemannian geometry
黎曼几何中的定量拓扑和极值对象
- 批准号:
217655-2005 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Quantitative Topology and Extremal Objects in Riemannian Geometry
黎曼几何中的定量拓扑和极值对象
- 批准号:
315010-2005 - 财政年份:2006
- 资助金额:
-- - 项目类别:
University Faculty Award
Quantitative Topology and Extremal Objects in Riemannian Geometry
黎曼几何中的定量拓扑和极值对象
- 批准号:
315010-2005 - 财政年份:2005
- 资助金额:
-- - 项目类别:
University Faculty Award
Quantitative topology and extremal objects in Riemannian geometry
黎曼几何中的定量拓扑和极值对象
- 批准号:
217655-2005 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual