Numerical Investigations of Three and Two Dimensional Free Boundary Problems
三维和二维自由边界问题的数值研究
基本信息
- 批准号:0204808
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-08-01 至 2006-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The work is concerned with the theory of free surface flows. Here a freesurface refers to an interface between two fluids. The position of such a surface is notknown a priori and has to be found as part of the solution. This leadsto a highly nonlinear mathematical problem, for which the PI willdevelop new numerical and analytical approaches. The objective is to develop numerically and analytically theories forthree-dimensional nonlinear free surface flows and for two-dimensionalinterfacial flows. Specifically:(A) Derive efficient and accurate numerical approaches for three-dimensional nonlinear free surface flows. (B) Use these new schemes together with analytical techniques to furtherthe understanding of three-dimensional free surface flows. Thisincludes extending linear and weakly nonlinear theories to thefully nonlinear regime and discovering the limiting configurationsof these flows.(C) Check the validity of existing approximations in ship hydrodynamics and improve them.(D) Investigate the existence of new types of waves propagatingat the interface between two fluids of constant densities. These waves shouldhave properties intermediate between those of ``generalized solitary waves"and those of ``classical fronts". Therefore it is appropriate todescribe them as ``generalized fronts". Their existence is strongly suggested by previous work but theyhave not been calculated explicitly.(E) Calculate the generalized fronts and perform a numerical study oftheir stability.Free surface flows are common in many aspects of science and everyday life.Examples are waves on a beach, bubbles rising in a glass of champagne,melting ice, pouring flows from a container and sails blowing in the wind.In these examples the free surface is the surface of the sea, the interfacebetween the gas and the champagne, the surface of the ice, the boundaryof the pouring flow and the surface of the sail. The PI will concentrateon applications arising from fluid mechanics. However the methods developed aregeneral and have applications outside fluid mechanics and the PI proposes toinvestigate them as well. The research will benefit applied mathematicians interested in nonlinearfree surface flows and applied scientists in need of accurate schemesto solve three-dimensional free surface flows. The proposed applicationto the nonlinear wave pattern generated by a ship is relevant toship hydrodynamics. The study of waves on sharp interfaces has applications in oceanography. Such sharp interfaces form in oceans, lakesand the atmosphere between adjacent masses of different density associated withdifferences in temperature, salinity or amount of suspension. One of thereasons for studying such sharp boundaries is that they appear at the surface asfrontal lines where dust, foam, timber and others accumulate.Many of the problems proposed can be done incollaboration with graduate students.
这项工作涉及自由表面流动的理论。 这里,自由表面指的是两种流体之间的界面。 这样一个表面的位置不是先验已知的,必须作为解的一部分来找到。这导致了一个高度非线性的数学问题,PI将开发新的数值和分析方法。目标是发展三维非线性自由表面流和二维界面流的数值和解析理论。具体而言:(A)推导出三维非线性自由表面流动的有效和精确的数值方法。(B)使用这些新的方案与分析技术,以进一步了解三维自由表面流动。这包括将线性和弱非线性理论扩展到完全非线性区域,并发现这些流动的极限构型。(C)检查船舶水动力学中现有近似的有效性并改进它们。(D)研究在两种恒定密度流体的界面上传播的新型波的存在性。这些波的性质应该介于“广义孤立波”和“经典波前”之间。因此,将其描述为"广义战线”是恰当的。他们的存在是强烈建议由以前的工作,但他们还没有被明确计算。(E)计算广义锋并对其稳定性进行数值研究。自由表面流在科学和日常生活的许多方面都很常见。例如海滩上的波浪,香槟酒中升起的气泡,融化的冰,容器中的倾倒流和风中吹的帆。在这些例子中,自由表面是海洋表面,气体和香槟酒之间的界面,冰的表面,倾倒流的边界和帆的表面。PI将专注于流体力学的应用。然而,开发的方法是通用的,并有流体力学以外的应用和PI建议调查他们以及. 这一研究将有利于对非线性自由表面流动感兴趣的应用数学家和需要精确方案来求解三维自由表面流动的应用科学家。所提出的应用于船舶产生的非线性波型是与船舶水动力学有关的。研究尖锐界面上的波在海洋学中有应用。在海洋、湖泊和大气中,由于温度、盐度或悬浮量的不同,密度不同的相邻物质之间形成了这种尖锐的界面。研究这种尖锐边界的原因之一是,它们在表面上看起来像锋线,灰尘、泡沫、木材和其他东西都在那里堆积。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jean-Marc Vanden-Broeck其他文献
Nonlinear two-dimensional free surface solutions of flow exiting a pipe and impacting a wedge
- DOI:
10.1007/s10665-020-10086-z - 发表时间:
2021-01-28 - 期刊:
- 影响因子:1.400
- 作者:
Alex Doak;Jean-Marc Vanden-Broeck - 通讯作者:
Jean-Marc Vanden-Broeck
A local structure model for the limiting configuration of interfacial solitary waves
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Xin Guan;Jean-Marc Vanden-Broeck;Zhan Wang;Frederic Dias - 通讯作者:
Frederic Dias
Jean-Marc Vanden-Broeck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jean-Marc Vanden-Broeck', 18)}}的其他基金
Modelling, computation and analysis of droplets guided by Faraday waves: a complex system with macroscopic quantum analogies.
法拉第波引导的液滴的建模、计算和分析:具有宏观量子类比的复杂系统。
- 批准号:
EP/N018559/1 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grant
Nonlinear hydroelastic waves with applications to ice sheets
非线性水弹性波在冰盖上的应用
- 批准号:
EP/J019569/1 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grant
Stability and dynamics of solitary gravity-capillary waves
孤立重力毛细波的稳定性和动力学
- 批准号:
EP/H022740/1 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grant
Mathematical Sciences: Numerical Studies of Nonlinear Waves
数学科学:非线性波的数值研究
- 批准号:
9500956 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Development and Application of Mathematics for the Sciences
数学科学:科学数学的发展和应用
- 批准号:
9123227 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing Grant
PYI: Mathematical Sciences: Nonlinear Waves and Free Surface Flow Problems
PYI:数学科学:非线性波和自由表面流问题
- 批准号:
8351124 - 财政年份:1984
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Experimental and numerical investigations of the three-dimensional boundary layer flow in radial impellers with tandem blades
串联叶片径向叶轮三维边界层流动的实验和数值研究
- 批准号:
416098161 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Investigations of Using Fluid-Dynamic Actuators for Three-Axis Stabilization of Pico- and Nanosatellites
使用流体动力执行器实现皮纳卫星三轴稳定的研究
- 批准号:
385938826 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Molecular-scale investigations on interfacial molecular adsorption structures by high-speed three-dimensional scanning force microscopy with an environmental control system
利用环境控制系统的高速三维扫描力显微镜对界面分子吸附结构进行分子尺度研究
- 批准号:
16H02111 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Investigations of novel subtypes of high-density lipoprotein in relation to cardiometabolic traits, lifestyle factors, and cardiovascular disease in three US-based cohorts
在美国的三个队列中研究高密度脂蛋白的新亚型与心脏代谢特征、生活方式因素和心血管疾病的关系
- 批准号:
283850885 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Fellowships
Collaborative Research: Coupled Numerical and Laboratory Investigations of Chaotic Advection to Enhance Spreading and Reaction in Three-Dimensional, Heterogeneous Porous Media
合作研究:混沌平流耦合数值和实验室研究,以增强三维非均质多孔介质中的扩散和反应
- 批准号:
1417005 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Coupled Numerical and Laboratory Investigations of Chaotic Advection to Enhance Spreading and Reaction in Three-Dimensional, Heterogeneous Porous Media
合作研究:混沌平流耦合数值和实验室研究,以增强三维非均质多孔介质中的扩散和反应
- 批准号:
1417017 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Genetic and Photogrammetric Investigations of Three Ecotypes of Killer Whales in the Southern Ross Sea
南罗斯海虎鲸三种生态型的遗传和摄影测量研究
- 批准号:
0338428 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Interagency Agreement
Structural investigations, at atomic level, of three enzymes comprising steps three, four and five of the mevalonate-independant pathway for isoprenoid biosynthesis
在原子水平上对三种酶进行结构研究,包括类异戊二烯生物合成的甲羟戊酸独立途径的第三步、第四步和第五步
- 批准号:
5422756 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Fellowships
Kinematic and Static Analyses of Tripod and Rzeppa Constant Velocity Joints and Investigations of Three Dimensional Motion of Its Drive Shaft
Tripod和Rzeppa等速万向节的运动、静态分析及其传动轴的三维运动研究
- 批准号:
14550118 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Three-dimensional structural investigations of macromolecular complexes and cellular structures on solid substrates by cryo-electron tomography (A01)
通过冷冻电子断层扫描对固体基质上的大分子复合物和细胞结构进行三维结构研究(A01)
- 批准号:
5264478 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Collaborative Research Centres