Next-Generation Load-Value Predictors

下一代负载值预测器

基本信息

  • 批准号:
    0208567
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-07-01 至 2004-06-30
  • 项目状态:
    已结题

项目摘要

Current high-end microprocessors incorporate a variety of predictors to improve performance. Future CPUs will likely include even more predictors, in particular load-value predictors. Load-value predictors provide predicted values to instructions that need the result of a load, thereby allowing these instructions to proceed without waiting for the load's slow memory access to complete. Thus, the program execution time is reduced.Recent work on load-value prediction proposes sophisticated hybrid predictors with confidence estimators. While these predictors are quite effective, their complexity and size negatively affect performance parameters such as critical-path length, cycle time, chip area, power consumption, and heat dissipation.The goal of this research is to reduce the size of value predictors without decreasing performance, to improve the prediction accuracy and coverage, and to develop new predictors and confidence estimators. A systematic search will find novel predictors that exploit additional value locality and will identify better confidence estimators that reduce costly mispredictions. Moreover, techniques that repair malformed predictions and inhibit wrong predictions will be investigated. Finally, schemes to enhance the predictor utilization and approaches to speed up predictor accesses will be researched. While the proposed ideas are already beneficial in today's systems, they will become even more important as increasing numbers of CPU cycles are wasted due to growing load latencies.
当前的高端微处理器包含各种预测器以提高性能。 未来的CPU可能会包含更多的预测器,特别是负载值预测器。 加载值预测器向需要加载结果的指令提供预测值,从而允许这些指令继续进行而无需等待加载的缓慢存储器访问完成。 因此,程序的执行时间减少。最近的工作负载值预测提出了复杂的混合预测与置信度估计。 虽然这些预测是相当有效的,其复杂性和大小的负面影响的性能参数,如关键路径长度,周期时间,芯片面积,功耗和散热。本研究的目标是减少尺寸的价值预测不降低性能,提高预测精度和覆盖率,并开发新的预测和置信度估计。 一个系统的搜索将找到新的预测,利用额外的价值局部性,并将确定更好的信心估计,减少昂贵的错误预测。 此外,将研究修复畸形预测和抑制错误预测的技术。 最后,将研究提高预测器利用率的方案和加快预测器访问的方法。 虽然所提出的想法在今天的系统中已经是有益的,但随着越来越多的CPU周期由于不断增长的负载延迟而被浪费,它们将变得更加重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Burtscher其他文献

Real-Time Synthesis of Compression Algorithms for Scientific Data
科学数据压缩算法的实时综合
Exploring last n value prediction
探索最后的 n 值预测
Progress toward Accelogic compression in ROOT
ROOT 中 Accelogic 压缩的进展
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Canal;J. Lauret;J. González;G. Buren;I. Cali;R. Nunez;Y. Ying;Martin Burtscher
  • 通讯作者:
    Martin Burtscher
Higher-order and tuple-based massively-parallel prefix sums
高阶和​​基于元组的大规模并行前缀和
Using general-purpose processor cores as prefetching engines in chip multiprocessor architectures
使用通用处理器内核作为芯片多处理器架构中的预取引擎
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Martin Burtscher;I. Ganusov
  • 通讯作者:
    I. Ganusov

Martin Burtscher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Burtscher', 18)}}的其他基金

Collaborative Research: SHF: Medium: Practical and Rigorous Correctness Checking and Correctness Preservation for Irregular Parallel Programs
合作研究:SHF:Medium:不规则并行程序的实用且严格的正确性检查和正确性保持
  • 批准号:
    1955367
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CSR: Medium: Collaborative Research: Programming Abstractions and Systems Support for GPU-Based Acceleration of Irregular Applications
CSR:媒介:协作研究:基于 GPU 的不规则应用加速的编程抽象和系统支持
  • 批准号:
    1406304
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
XPS: EXPL: CCA: Collaborative Research: Nixing Scale Bugs in HPC Applications
XPS:EXPL:CCA:协作研究:消除 HPC 应用程序中的规模错误
  • 批准号:
    1438963
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: Real-Time Unobtrusive Tracing in Multicore Embedded Systems
CSR:小型:协作研究:多核嵌入式系统中的实时非侵入式跟踪
  • 批准号:
    1217231
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ITR: A High-Performance Compression Infrastructure for Extended Program Traces
ITR:用于扩展程序跟踪的高性能压缩基础设施
  • 批准号:
    0312966
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Affinity Directed Mobility for Location-Independent Data Access
协作研究:用于位置无关数据访问的亲和定向移动性
  • 批准号:
    0125987
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

CAREER: Non-Reciprocally-Coupled Load-Modulation Platform for Next-Generation High-Power Magnetic-Less Fully-Directional Radio Front Ends
职业:用于下一代高功率无磁全向无线电前端的非互易耦合负载调制平台
  • 批准号:
    2239207
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Sustainable Approaches for a New Generation of Green Composites in Load-Bearing Applications.
承载应用中新一代绿色复合材料的可持续方法。
  • 批准号:
    2751972
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of a new generation prosthetic hand with fast responsive SMA based artificial muscle and large load-holding capability
开发具有快速响应SMA基人工肌肉和大承载能力的新一代假手
  • 批准号:
    19K23476
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Green - growing a reliably efficient electrical nanogrid: load sensing power conditioning of adaptively managed renewable power systems incorporating energy storage and generation
绿色——发展可靠高效的纳米电网:结合储能和发电的自适应管理可再生电力系统的负载传感功率调节
  • 批准号:
    477238-2014
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Green - growing a reliably efficient electrical nanogrid: load sensing power conditioning of adaptively managed renewable power systems incorporating energy storage and generation
绿色——发展可靠高效的纳米电网:结合储能和发电的自适应管理可再生电力系统的负载传感功率调节
  • 批准号:
    477238-2014
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Green - growing a reliably efficient electrical nanogrid: load sensing power conditioning of adaptively managed renewable power systems incorporating energy storage and generation
绿色——发展可靠高效的纳米电网:结合储能和发电的自适应管理可再生电力系统的负载传感功率调节
  • 批准号:
    477238-2014
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Strategies to utilise large-scale future renewable energy generation in Scotland (or other locations remote from major load centres)
在苏格兰(或远离主要负荷中心的其他地点)利用未来大规模可再生能源发电的策略
  • 批准号:
    2092534
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Studentship
Load Disaggregation Accuracy and Consumption/Generation Signal Simulation
负载分解精度和消耗/发电信号模拟
  • 批准号:
    493162-2016
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Experience Awards (previously Industrial Undergraduate Student Research Awards)
Green - growing a reliably efficient electrical nanogrid: load sensing power conditioning of adaptively managed renewable power systems incorporating energy storage and generation
绿色——发展可靠高效的纳米电网:结合储能和发电的自适应管理可再生电力系统的负载传感功率调节
  • 批准号:
    477238-2014
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Development of Inverter with Load Estimation for Effective Use of Photovoltaic Power Generation
开发具有负载估计功能的逆变器以有效利用光伏发电
  • 批准号:
    16K18070
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了