Complex Properties of Disordered Quantum Systems

无序量子系统的复杂特性

基本信息

  • 批准号:
    0209630
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-08-01 至 2007-07-31
  • 项目状态:
    已结题

项目摘要

This award supports computational and theoretical research on classical and quantum complex systems. The PI will study quantum complex systems and their classical analogs with an aim to elucidate the relationship between them. Research will focus on understanding how the low energy states of the two-dimensional +J/-J Edwards-Anderson spin glass model change when quantum-mechanical tunneling is introduced. The PI will exploit a computational algorithm developed to find all the ground states of the classical model to enable the calculation of exact quantum eigenstates of much larger system sizes than can be computed by other methods, in the limit of small tunneling amplitudes. Preliminary results reveal that the quantum ground states have a complex and rich structure that will be elucidated further in the proposed research. The method is also being used to compare the effects of quantum tunneling to other (classical) physical perturbations, such as coupling to a deformable lattice.%%%This award supports computational and theoretical research and education on classical and quantum complex systems. The PI will use a model of a spin glass to study the relationship between quantum complex systems and their classical analogs. This work is of fundamental importance to the fields of statistical mechanics and condensed matter physics. It also contributes to efforts to control and manipulate quantum mechanical states; such a capability may have long term impact on information and communication technologies.***
该奖项支持经典和量子复杂系统的计算和理论研究。PI将研究量子复杂系统及其经典类似物,目的是阐明它们之间的关系。研究的重点是了解二维+J/-J edward - anderson自旋玻璃模型在引入量子力学隧穿后低能态的变化。PI将利用一种计算算法来找到经典模型的所有基态,以便在小隧道振幅的限制下,计算出比其他方法计算出的大得多的系统尺寸的精确量子特征态。初步结果表明,量子基态具有复杂而丰富的结构,将在本文的研究中进一步阐明。该方法也被用于比较量子隧穿效应与其他(经典)物理扰动的影响,例如耦合到可变形晶格。该奖项支持经典和量子复杂系统的计算和理论研究和教育。PI将使用自旋玻璃模型来研究量子复杂系统与其经典类似物之间的关系。这项工作对统计力学和凝聚态物理领域具有重要的基础意义。它还有助于控制和操纵量子力学状态;这种能力可能对信息和通信技术产生长期影响

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Susan Coppersmith其他文献

Reversible boolean networks II. Phase transitions, oscillations, and local structures
可逆布尔网络 II.
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Susan Coppersmith;L. Kadanoff;Zhitong Zhang
  • 通讯作者:
    Zhitong Zhang
Complexity of the predecessor problem in Kauffman networks.
Violation of Bell's inequality in Si
在硅中违反贝尔不等式
  • DOI:
    10.1038/nnano.2016.26
  • 发表时间:
    2016-03-03
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Susan Coppersmith
  • 通讯作者:
    Susan Coppersmith

Susan Coppersmith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Susan Coppersmith', 18)}}的其他基金

Theoretical investigations of materials suitable for qubits and related applications
适用于量子位和相关应用的材料的理论研究
  • 批准号:
    1132804
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Theoretical studies of dynamical organization and design principles of biominerals
生物矿物动态组织和设计原理的理论研究
  • 批准号:
    0906951
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Dynamics of Nonequilibrium Condensed Matter Systems
非平衡凝聚态系统动力学
  • 批准号:
    9626119
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Sliding Charge Density Waves Heavy Fermion Superconductors (Materials Research)
滑动电荷密度波重费米子超导体(材料研究)
  • 批准号:
    8503948
  • 财政年份:
    1986
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Principles and Properties of Disordered Regions in Post-Transcriptional Control
转录后控制中无序区域的原理和特性
  • 批准号:
    10753392
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Disordered-ordered structure transition in co-sputtered solid solution nanoparticles and its impact on catalytic properties
共溅射固溶体纳米粒子的无序结构转变及其对催化性能的影响
  • 批准号:
    22K04852
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Principles and Properties of Disordered Regions in Post-Transcriptional Control
转录后控制中无序区域的原理和特性
  • 批准号:
    10535908
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Intrinsically disordered regions in disease: from sequence to molecular properties to function
疾病中的内在无序区域:从序列到分子特性再到功能
  • 批准号:
    451567
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
CAREER: Understanding Chemical, Structural and Redox Properties of Disordered Metal Oxides
职业:了解无序金属氧化物的化学、结构和氧化还原性质
  • 批准号:
    2045570
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Oxygen storage properties of oxide solid solutions with disordered oxide ion vacancies
无序氧化物离子空位氧化物固溶体的储氧性能
  • 批准号:
    18K05276
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigating the physicochemical properties of coacervates formed by intrinsically disordered proteins.
研究由本质上无序的蛋白质形成的凝聚层的物理化学性质。
  • 批准号:
    1934917
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Studentship
Dynamic and Structural Properties of Amyloid Forming and Intrinsically Disordered Polypeptide Chains (A10*)
淀粉样蛋白形成和本质无序多肽链 (A10*) 的动态和结构特性
  • 批准号:
    276233159
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    CRC/Transregios
Structure and properties of disordered materials
无序材料的结构和性能
  • 批准号:
    203238-2008
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Localization Properties of Interacting Disordered Quantum Systems
相互作用的无序量子系统的局域化特性
  • 批准号:
    1069320
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了