ITR: Collaborative Research: Solving PDEs Using Low Separation-Rank Representations and Optimal Quadratures for Expontials

ITR:协作研究:使用低分离秩表示和指数最优求积求解偏微分方程

基本信息

  • 批准号:
    0219326
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-08-15 至 2004-07-31
  • 项目状态:
    已结题

项目摘要

This project develops time-domain solvers for wave propagation problemsin two and three dimensions, with fundamentally improved properties,namely, significantly reduced sampling requirements and, at the same time,significantly higher accuracy. Such solvers would allow modeling of linear and, eventually, nonlinearwave propagation in domains that are thousands of characteristic wavelengthsin size, with interfaces and variable coefficients.This approach would also provide improved bases for solvingnonlinear advection-diffusion problems. The solvers are built upon twonew techniques, namely, optimal quadratures to represent bandlimited functions, and a numerical generalization of separation of variables to accelerate applying higher-dimensional operators. Eachtechnique contains the potential to significantly advance computationalscience across a wide range of applications. Together they provide anew paradigm that efficiently organizes the information contained inoperators governing physical phenomena. This project develops these techniquesfurther, and develops multiresolution representations for operators andfunctions, based on the optimal quadratures.Any computational modeling of natural phenomena requires discretizationof the underlying mathematical equations. This project addresses questions ofoptimality and efficiency of such discretizations, and of organizationo information for two important modeling areas, wave propagation andgeophysical fluid dynamics. This research aims to generate a much wider use ofefficient techniques for representing information in scientific modeling, and toincrease the speed and accuracy of simulations by up to two orders of magnitude,with foreseeable benefits to such areas as seismology, remote sensing,acoustics, optics, geophysical fluid dynamics, and quantum chemistry. It wouldreduce the computational cost of obtaining high accuracy, which is necessary todescribe phenomena that are highly sensitive to changes in physicalparameters, and that often cause technological bottlenecks.This Collaborative Research is led by the Department of AppliedMathematics at the University of Colorado at Boulder, and includes the Department ofMeteorology at the University of Maryland at College Park. It will fundone research associate, two visiting scientists from UMD and OhioUniversity, and one graduate student in a diverse research group that includes aresearch associate, two postdoctoral researchers, a graduate student, and fourundergraduate students.
该项目开发了二维和三维波传播问题的时域解算器,具有根本性的改进性能,即显著降低了采样要求,同时显著提高了精度。这样的求解器将允许线性和最终非线性波传播的域中,是数以千计的特征wavelengths大小,接口和可变系数的建模。这种方法也将提供solvingnonlinear对流扩散问题的改进的基础。 求解器是建立在twonenew技术,即,最佳求积表示带限函数,和一个数值推广的分离变量,以加速应用高维算子。 每一种技术都有可能在广泛的应用中大大推进计算科学。 它们一起提供了一种新的范式,有效地组织了管理物理现象的操作符中包含的信息。 本项目进一步发展了这些技术,并在最优求积的基础上发展了算子和函数的多分辨率表示。任何自然现象的计算建模都需要对基础数学方程进行离散化。这个项目解决了这样的离散化的最优性和效率问题,以及两个重要建模领域,波传播和地球物理流体动力学的组织信息问题。 这项研究的目的是产生一个更广泛的使用ofefficient技术表示信息的科学建模,并提高速度和精度的模拟高达两个数量级,与可预见的好处,如地震,遥感,声学,光学,地球物理流体动力学和量子化学等领域。这将减少获得高精度的计算成本,这是必要的描述现象,是高度敏感的物理参数的变化,往往会导致技术瓶颈。这项合作研究是由数学系在博尔德的科罗拉多大学,并包括气象学系在马里兰州在学院公园。 它将资助一名研究助理,两名来自UMD和俄亥俄大学的访问科学家,以及一名研究生,该研究生来自一个多元化的研究小组,其中包括一名研究助理,两名博士后研究人员,一名研究生和四名本科生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Beylkin其他文献

Bandlimited implicit Runge–Kutta integration for Astrodynamics
  • DOI:
    10.1007/s10569-014-9551-x
  • 发表时间:
    2014-05-22
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Ben K. Bradley;Brandon A. Jones;Gregory Beylkin;Kristian Sandberg;Penina Axelrad
  • 通讯作者:
    Penina Axelrad
Efficient Fourier basis particle simulation
  • DOI:
    10.1016/j.jcp.2019.07.023
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Matthew S. Mitchell;Matthew T. Miecnikowski;Gregory Beylkin;Scott E. Parker
  • 通讯作者:
    Scott E. Parker
On generalized Gaussian quadratures for bandlimited exponentials
  • DOI:
    10.1016/j.acha.2012.07.002
  • 发表时间:
    2013-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Matthew Reynolds;Gregory Beylkin;Lucas Monzón
  • 通讯作者:
    Lucas Monzón
Multiresolution Analysis of Elastic Degradation in Heterogeneous Materials
  • DOI:
    10.1023/a:1011905201001
  • 发表时间:
    2001-01-01
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Kaspar Willam;Inkyu Rhee;Gregory Beylkin
  • 通讯作者:
    Gregory Beylkin
A multiresolution model for small-body gravity estimation
  • DOI:
    10.1007/s10569-011-9374-y
  • 发表时间:
    2011-09-15
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Brandon A. Jones;Gregory Beylkin;George H. Born;Robert S. Provence
  • 通讯作者:
    Robert S. Provence

Gregory Beylkin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Beylkin', 18)}}的其他基金

Novel Algorithms for Separated Representations in Functional Form for the Adaptive Solution of Quantum Chemistry Problems and Other Applications
用于量子化学问题和其他应用的自适应解决方案的函数形式分离表示的新算法
  • 批准号:
    1320919
  • 财政年份:
    2013
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Nonlinear Approximations for Inverse Problems
反问题的非线性近似
  • 批准号:
    1009951
  • 财政年份:
    2010
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Fast Multiresolution Methods and Nonlinear Approximations for Multidimensional Problems
多维问题的快速多分辨率方法和非线性近似
  • 批准号:
    0612358
  • 财政年份:
    2006
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
ITR: Collaborative Research on Multiresolution Adaptive Spectral Element Solvers for Atmospheric Fluid Dynamics
ITR:大气流体动力学多分辨率自适应谱元求解器的合作研究
  • 批准号:
    0082982
  • 财政年份:
    2000
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似海外基金

ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
  • 批准号:
    1404694
  • 财政年份:
    2013
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
ITR-SCOTUS: A Resource for Collaborative Research in Speech Technology, Linguistics, Decision Processes, and the Law
ITR-SCOTUS:语音技术、语言学、决策过程和法律合作研究的资源
  • 批准号:
    1139735
  • 财政年份:
    2011
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
  • 批准号:
    0963973
  • 财政年份:
    2009
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
  • 批准号:
    1018072
  • 财政年份:
    2009
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
ITR Collaborative Research: A Reusable, Extensible, Optimizing Back End
ITR 协作研究:可重用、可扩展、优化的后端
  • 批准号:
    0838899
  • 财政年份:
    2008
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
  • 批准号:
    0833849
  • 财政年份:
    2008
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
  • 批准号:
    0808419
  • 财政年份:
    2007
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
ITR: Collaborative Research - ASE - (sim+dmc): Image-based Biophysical Modeling: Scalable Registration and Inversion Algorithms and Distributed Computing
ITR:协作研究 - ASE - (sim dmc):基于图像的生物物理建模:可扩展配准和反演算法以及分布式计算
  • 批准号:
    0849301
  • 财政年份:
    2007
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
ITR: Collaborative Research: Modeling and Display of Haptic Information for Enhanced Performance of Computer-Integrated Surgery
ITR:协作研究:触觉信息建模和显示,以提高计算机集成手术的性能
  • 批准号:
    0711040
  • 财政年份:
    2007
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
ITR Collaborative Research: GEON: A Research Project to Create Cyberinfrastructure for the Geosciences
ITR 合作研究:GEON:为地球科学创建网络基础设施的研究项目
  • 批准号:
    0724265
  • 财政年份:
    2006
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了