Conference Proposal in Support of Young Investigators

支持年轻研究者的会议提案

基本信息

  • 批准号:
    0224962
  • 负责人:
  • 金额:
    $ 1.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-06-01 至 2002-12-31
  • 项目状态:
    已结题

项目摘要

The investigator and his colleagues study problems in the overlapof algebraic geometry and commutative algebra. A major goalis to understand the structure of minimal free resolutionsof homogeneous ideals, particularly those defining zero dimensional schemes. Ideals of interest range from ideals of fat points (motivated by their intimate connections to questions about linear systems on projective varieties),to ideals of generic forms (work on which is closely connected towork on the Weak and Strong Lefschetz properties for Artinian algebras, and, via Matlis duality, to work on fat points), to ideals whose quotients are Gorenstein rings (and hence involve problems on arithmetically Gorenstein subschemes of projective space, and Gorenstein liaison). This broad range of methods and motivations is a significant hurdle that young and future researchers must overcome to do productive workin this area. This grant aims to advance the training and career development of young investigators and graduate students by providingtravel support to attend and interact with leaders in the field at an international conference addressing the research cited above.Computational issues underlie much of this research, and machine computation is both an important tool in the research described above and the object of some of this research. However, work in this area can easily outrun the capability of any conceivable computer, so theoretical studies are essential not only for understanding the results of machine computations, but to achieve results beyond the reach of brute force computation. This is, for example, a significant issue for applications of the research described here to interpolation. Large data sets are acommon feature of modern life, whether in science, technology or business.Such data sets often involve functional relationships among variousvariables. Among the most tractable functions are the polynomials.If one wants to model relationships with polynomials it is helpful to know theoretically how complicated the worst case such polynomial might be(as measured, say, by degree), whereas it might be expensive or impossible todetermine this directly. Such theoretical results about polynomialsare what researchers aim for in studying minimal free resolutionsof homogeneous ideals.
调查员和他的同事们研究问题的代数几何和交换代数。一个主要目标是了解齐次理想的极小自由解的结构,特别是那些定义零维方案的结构。理想的兴趣范围从理想的脂肪点(动机是他们的密切联系的问题,线性系统的投影品种),理想的一般形式(工作是密切相关的工作弱和强Lefschetz性质的阿廷代数,并通过Matlis对偶,工作的脂肪点),到其商是Gorenstein环的理想(因此涉及射影空间的算术Gorenstein子方案和Gorenstein联络的问题)。这种广泛的方法和动机是一个重要的障碍,年轻和未来的研究人员必须克服在这一领域做富有成效的工作。该基金旨在通过提供旅行支持来促进年轻研究人员和研究生的培训和职业发展,以便参加解决上述研究问题的国际会议并与该领域的领导者互动。计算问题是这项研究的基础,机器计算既是上述研究的重要工具,也是一些研究的对象。然而,在这一领域的工作可以很容易地超越任何可以想象的计算机的能力,因此理论研究不仅是理解机器计算的结果,而且是实现暴力计算无法达到的结果。这是,例如,一个重要的问题,这里所描述的研究应用插值。大型数据集是现代生活中的一个共同特征,无论是在科学、技术还是商业领域,这类数据集往往涉及各种变量之间的函数关系。多项式是最容易处理的函数之一。如果想用多项式来建模关系,那么从理论上知道这种多项式的最坏情况有多复杂(比如用次数来衡量)是很有帮助的,而直接确定这一点可能成本很高,或者是不可能的。这些关于多项式的理论结果是研究齐次理想的最小自由分解的目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Harbourne其他文献

Classifying Hilbert functions of fat point subschemes in ℙ2
  • DOI:
    10.1007/bf03191208
  • 发表时间:
    2009-06-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    A. V. Geramita;Brian Harbourne;Juan Migliore
  • 通讯作者:
    Juan Migliore
Finite sets of points in $${\mathbb {P}}^4$$ with special projection properties
  • DOI:
    10.1007/s10711-025-00990-y
  • 发表时间:
    2025-02-25
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Luca Chiantini;Łucja Farnik;Giuseppe Favacchio;Brian Harbourne;Juan Migliore;Tomasz Szemberg;Justyna Szpond
  • 通讯作者:
    Justyna Szpond
Erratum to: Classifying Hilbert functions of fat point subschemes in $${\mathbb{P}^{2}}$$
勘误:关于在$${\mathbb{P}^{2}}$$中胖点子概型的希尔伯特函数的分类
  • DOI:
    10.1007/s13348-010-0035-3
  • 发表时间:
    2011-01-12
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    A. V. Geramita;Brian Harbourne;Juan Migliore
  • 通讯作者:
    Juan Migliore
New constructions of unexpected hypersurfaces in $$\mathbb {P}^n$$
  • DOI:
    10.1007/s13163-019-00343-w
  • 发表时间:
    2020-01-09
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Brian Harbourne;Juan Migliore;Halszka Tutaj-Gasińska
  • 通讯作者:
    Halszka Tutaj-Gasińska

Brian Harbourne的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Harbourne', 18)}}的其他基金

KUMUNU 2008, September 2008, Lincoln, NE
KUMUNU 2008,2008 年 9 月,内布拉斯加州林肯
  • 批准号:
    0838445
  • 财政年份:
    2008
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
KUMUNU 2007
库穆努 2007
  • 批准号:
    0734827
  • 财政年份:
    2007
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
Topics in Commutative Algebra and Algebraic Geometry
交换代数和代数几何专题
  • 批准号:
    0071008
  • 财政年份:
    2000
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Rational Surfaces
数学科学:有理曲面
  • 批准号:
    8601743
  • 财政年份:
    1986
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Continuing Grant

相似海外基金

Conference: A proposal requesting NSF support for the 15th International Symposium on Particle Image Velocimetry (ISPIV 2023), San Diego, CA, June 19-21, 2023
会议:请求 NSF 支持第 15 届粒子图像测速国际研讨会 (ISPIV 2023) 的提案,加利福尼亚州圣地亚哥,2023 年 6 月 19-21 日
  • 批准号:
    2243551
  • 财政年份:
    2022
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
Conference Proposal: Student and Junior Faculty Support for the International Symposium on Sustainable Systems and Technology (ISSST) 2021
会议提案:为 2021 年可持续系统与技术国际研讨会 (ISSST) 提供学生和初级教师支持
  • 批准号:
    2132324
  • 财政年份:
    2021
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
Conference Proposal: Support Student and Early Professional Attendance to the 2020 North American Ornithological Conference, San Juan, Puerto Rico
会议提案:支持学生和早期专业人士参加 2020 年北美鸟类学会议,波多黎各圣胡安
  • 批准号:
    2001973
  • 财政年份:
    2020
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
Conference Proposal for NSF support of the Fall 2020 ACS Graduate Student Symposium entitled Pushing the Boundaries: Women Scientists Catalyzing Change; AUG 2020; San Francisco, CA
NSF 支持 2020 年秋季 ACS 研究生研讨会的会议提案,题为“突破界限:女性科学家催化变革”;
  • 批准号:
    2013322
  • 财政年份:
    2020
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
Conference Support Proposal: Annual Conference Experience for Undergraduates (CEU)
会议支持提案:本科生年会体验(CEU)
  • 批准号:
    2011186
  • 财政年份:
    2020
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
Conference Support Proposal: IEEE International Conference on Healthcare Informatics 2020
会议支持提案:2020 年 IEEE 国际医疗信息学会议
  • 批准号:
    2031014
  • 财政年份:
    2020
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
Conference Participation Support Proposal - 22nd Annual Conference Experience for Undergraduates; Crystal City, VA, 13-17 October 2019
会议参与支持提案——第22届本科生年会体验;
  • 批准号:
    1912926
  • 财政年份:
    2019
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
Conference Proposal: Developing a National Research Agenda for Academic Support in STEM Higher Education
会议提案:制定 STEM 高等教育学术支持国家研究议程
  • 批准号:
    1836657
  • 财政年份:
    2018
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
Proposal in Support of the International Conference on Strength of Materials (ICSMA18)
支持国际材料强度会议 (ICSMA18) 的提案
  • 批准号:
    1834401
  • 财政年份:
    2018
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
Conference Proposal: Early-Career Researcher Travel Support for 26th CIRP Life Cycle Engineering Conference May 7-9, 2019
会议提案:2019 年 5 月 7-9 日第 26 届 CIRP 生命周期工程会议的早期职业研究员差旅支持
  • 批准号:
    1855411
  • 财政年份:
    2018
  • 资助金额:
    $ 1.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了