Pointwise and Semigroup Methods in Viscous Conservation Laws and Completely Integrable Systems

粘性守恒定律和完全可积系统中的点法和半群法

基本信息

  • 批准号:
    0230003
  • 负责人:
  • 金额:
    $ 9.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-09-01 至 2004-08-31
  • 项目状态:
    已结题

项目摘要

Viscous conservation laws arise in a wide variety of physical applications, including fluid dynamics, magnetohydrodynamics,and materials science. Of particular importance are solutionsof such equations that are stable and hence typically correspond with observable phenomena. Unfortunately, establishingthe stability of these solutions has proven to be a quitedifficult problem. The pointwise Green's function approach,however, initiated by Liu and developed by Liu and his collaborators, has proven quite robust: in applications to viscous shock waves arising in single conservation laws ofarbitrary order, viscous shock waves arising in systems with second order diffusion, planar viscous shock waves, degenerate viscous shock waves, and rarefaction waves. We propose to continue and extend this promising line ofresearch in three directions. First, new techniques recently developed by Howard and Zumbrun appear suitablefor extension to (i) systems of viscous conservation laws admitting degenerate viscous shock waves, and (ii)systems of viscous conservation laws with high orderviscosity. Second, we propose to develop further techniques that will extend the pointwise Green's function approach to the case of viscous rarefaction waves. Finally, we would like to incorporate new techniquesrecently developed in the context of perturbation theoryfor completely integrable systems into the study of the necessarily oscillatory dynamics that arise in viscous conservation laws of order higher than two.The conservation of such fundamental properties as energy andmomentum often leads to partial differential equationsthat model some underlying physical process. For example,the Navier-Stokes equations of fluid dynamics and the Maxwell equations of electromagnetism follow this paradigm. Of primary concern are stable phenomena: thosewhose principal structure is robust to minor environmentalfluctuations. We propose to continue and extend a promising line of research that has been extraordinarily successful in establishing a clear criterion for suchstability. A direct consequence of the approach is a detailed understanding of certain fundamental partialdifferential equations.
粘性守恒定律出现在各种物理应用中,包括流体动力学、磁流体动力学和材料科学。 特别重要的是此类方程的解是稳定的,因此通常与可观察的现象相对应。 不幸的是,事实证明,建立这些解决方案的稳定性是一个相当困难的问题。 然而,由刘发起并由刘和他的合作者开发的点格林函数方法已被证明相当稳健:在任意阶单一守恒定律中产生的粘性冲击波的应用中,在具有二阶扩散的系统中产生的粘性冲击波,平面粘性冲击波,简并粘性冲击波和稀疏波。 我们建议在三个方向上继续并扩展这一有前景的研究方向。 首先,Howard 和 Zumbrun 最近开发的新技术似乎适合扩展到(i)允许简并粘性冲击波的粘性守恒定律系统,以及(ii)具有高阶粘性的粘性守恒定律系统。 其次,我们建议开发进一步的技术,将点格林函数方法扩展到粘性稀疏波的情况。 最后,我们希望将最近在完全可积系统的微扰理论背景下开发的新技术纳入对二阶以上粘性守恒定律中出现的必然振荡动力学的研究中。能量和动量等基本属性的守恒通常会导致偏微分方程对某些潜在的物理过程进行建模。 例如,流体动力学的纳维-斯托克斯方程和电磁学的麦克斯韦方程就遵循这个范式。 主要关注的是稳定现象:其主要结构对较小的环境波动具有鲁棒性。 我们建议继续并扩展一项有希望的研究路线,该研究路线在为这种稳定性建立明确的标准方面取得了巨大的成功。 该方法的直接结果是对某些基本偏微分方程的详细理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Howard其他文献

Ground standoff mine detection system (GSTAMIDS) engineering, manufacturing, and development (EMD) Block 0
地面防区外地雷探测系统 (GSTAMIDS) 工程、制造和开发 (EMD) Block 0
  • DOI:
    10.1117/12.445448
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. R. Pressley;D. Pabst;G. Sower;L. Nee;B. Green;Peter Howard
  • 通讯作者:
    Peter Howard
Optimizing Mass-Scale Multi-Screen Video Delivery
优化大规模多屏视频传输
  • DOI:
    10.5594/jmi.2020.2973561
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Reznik;Xiangbo Li;K. Lillevold;Robert Peck;T. Shutt;Peter Howard
  • 通讯作者:
    Peter Howard
Spectral analysis for periodic solutions of the Cahn–Hilliard equation on $${\mathbb{R}}$$
Stability of Transition Front Solutions in Multidimensional Cahn–Hilliard Systems
  • DOI:
    10.1007/s00332-016-9295-8
  • 发表时间:
    2016-03-31
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Peter Howard
  • 通讯作者:
    Peter Howard
Myocarditis in mice and guinea pigs experimentally infected with a canine-origin Borrelia isolate from Florida.
实验性感染佛罗里达州犬源疏螺旋体的小鼠和豚鼠出现心肌炎。
  • DOI:
    10.2460/ajvr.1996.57.04.505
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Edward B. Breitschwerdt;Frank J. Geoly;Donald J. Meuten;Jay F. Levine;Peter Howard;B. Hegarty;Laurie C. Stafford
  • 通讯作者:
    Laurie C. Stafford

Peter Howard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Howard', 18)}}的其他基金

SBIR Phase I: Risk-Aware Motion Planning for Autonomous Vehicles
SBIR 第一阶段:自动驾驶车辆的风险感知运动规划
  • 批准号:
    1819302
  • 财政年份:
    2018
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant
Spectral analysis and stability for wave patterns and multidimensional waves
波型和多维波的频谱分析和稳定性
  • 批准号:
    0906370
  • 财政年份:
    2009
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant
Stability of Shock Waves and Related Structures in Combustion Models, Thin Film Flows, and General Conservative Systems
燃烧模型、薄膜流和一般保守系统中冲击波和相关结构的稳定性
  • 批准号:
    0500988
  • 财政年份:
    2005
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9804390
  • 财政年份:
    1998
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Fellowship Award

相似海外基金

Weighted semigroup approach for Fokker-Planck-Kolmogorov equations
Fokker-Planck-Kolmogorov 方程的加权半群方法
  • 批准号:
    517982119
  • 财政年份:
    2023
  • 资助金额:
    $ 9.3万
  • 项目类别:
    WBP Fellowship
Application of automata and transducers to computational semigroup theory
自动机和传感器在计算半群论中的应用
  • 批准号:
    2590267
  • 财政年份:
    2021
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Studentship
Zero-dimensional semigroup compactifications of locally compact groups
局部紧群的零维半群紧化
  • 批准号:
    539121-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 9.3万
  • 项目类别:
    University Undergraduate Student Research Awards
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
  • 批准号:
    358793-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial theory of semigroup actions
半群作用的组合理论
  • 批准号:
    1795681
  • 财政年份:
    2016
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Studentship
Thermodynamic formalism for conformal semigroup actions
共形半群作用的热力学形式主义
  • 批准号:
    15H06416
  • 财政年份:
    2015
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
  • 批准号:
    358793-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Discovery Grants Program - Individual
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
  • 批准号:
    358793-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Discovery Grants Program - Individual
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
  • 批准号:
    358793-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Discovery Grants Program - Individual
The corona factorization property and the Cuntz semigroup in the classification of C*-algebras
C*-代数分类中的电晕分解性质和Cuntz半群
  • 批准号:
    236576044
  • 财政年份:
    2013
  • 资助金额:
    $ 9.3万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了