CAREER: Algorithms for fitting, matching, and simplifying shapes

职业:拟合、匹配和简化形状的算法

基本信息

  • 批准号:
    0237431
  • 负责人:
  • 金额:
    $ 40.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-08-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

ABSTRACTThis research is focused on efficient algorithms for analyzing, comparing, and operating on shapes, and addresses three classes of problems connected with shapes: (1) Shape fitting, which is the problem of fitting a known simple shape, such as a line, to a given set of points; (2) Shape matching, which is the problem of estimating the similarity between two discretized shapes; and (3) Shape simplification, which is the problem of replacing a complex shape with a simpler one while preserving as much of the topology and geometry efficient as specified. This research views these problems as geometric optimization problems and emphasizes the development of approximation algorithms for solving them.Shape fitting is a problem that arises in discovering trends in statistical data or in estimating how well a manufactured part meets its specifications. Shape matching is a problem that arises in estimating how closely two objects resemble each other; the objects being compared could be two web documents or two human images in a biometrics application. Shape simplification is an important problem in scenarios such as flight simulation when trying to display a scene at the appropriate level of detail. This research views computer programs for these problems as algorithms for geometric optimization, where we want to maximize a certain quantity subject to several constraints. Algorithms that try to find the best solution to such problems are often too slow to be of practical use. This research emphasizes approximation algorithms, which find a solution within a known tolerance of the best solution rather than the best solution. In most applications an approximate optimum is sufficient. Approximation algorithms are generally considerably faster, simpler, and more robust than algorithms that find the best solution. The main goal of this research is to discover powerful techniques for developing such approximation algorithms.
摘要本研究的重点是分析、比较和运算形状的有效算法,并解决了三类与形状相关的问题:(1)形状拟合,即将已知的简单形状(如直线)拟合到给定的点集;(2)形状匹配,即估计两个离散形状之间的相似性问题;(3)形状简化,即用更简单的形状代替复杂的形状,同时保留尽可能多的拓扑和几何效率的问题。本研究将这些问题视为几何优化问题,并强调求解这些问题的近似算法的发展。形状拟合是在发现统计数据的趋势或估计制造零件符合其规格的程度时出现的问题。形状匹配是在估计两个物体彼此相似程度时出现的问题;被比较的对象可以是两个web文档,也可以是生物识别应用程序中的两张人类图像。在飞行模拟等场景中,当试图以适当的细节水平显示场景时,形状简化是一个重要问题。本研究将这些问题的计算机程序视为几何优化算法,在几何优化算法中,我们希望在几个约束条件下最大化某个数量。试图找到这类问题的最佳解决方案的算法通常速度太慢,无法实际应用。本研究强调近似算法,它在已知的最优解的容差范围内找到一个解,而不是最优解。在大多数应用中,近似最优值就足够了。近似算法通常比寻找最佳解的算法更快、更简单、更健壮。本研究的主要目标是发现开发这种近似算法的强大技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kasturi Varadarajan其他文献

Optimally Decomposing Coverings with Translates of a Convex Polygon
  • DOI:
    10.1007/s00454-011-9353-9
  • 发表时间:
    2011-06-29
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Matt Gibson;Kasturi Varadarajan
  • 通讯作者:
    Kasturi Varadarajan
Facility Location on a Polyhedral Surface
  • DOI:
    10.1007/s00454-003-2769-0
  • 发表时间:
    2003-08-06
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Boris Aronov;Marc van Kreveld;René van Oostrum;Kasturi Varadarajan
  • 通讯作者:
    Kasturi Varadarajan

Kasturi Varadarajan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kasturi Varadarajan', 18)}}的其他基金

Collaborative Research: CNS Core: Small: Retrofitting IoT Ecosystems with a Software-defined Overlay to Enforce Safety, Security, and Privacy Policies
合作研究:CNS 核心:小型:使用软件定义的覆盖层改造物联网生态系统,以执行安全、安保和隐私政策
  • 批准号:
    2006556
  • 财政年份:
    2020
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
AF: Small: Geometric Clustering and Covering: New Directions
AF:小:几何聚类和覆盖:新方向
  • 批准号:
    1615845
  • 财政年份:
    2016
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
AF: Small: Some New and Old Frontiers in Geometric Optimization
AF:小:几何优化中的一些新旧前沿
  • 批准号:
    1318996
  • 财政年份:
    2013
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 40.07万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了