CAREER: Capacity-Driven Design of Large-Scale Wireless Sensor Networks
职业:大规模无线传感器网络的容量驱动设计
基本信息
- 批准号:0238035
- 负责人:
- 金额:$ 42.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research centers on a design methodology for large-scale wireless sensor networks used for data gathering that uses fundamental capacity limit studies as guidelines. The motivation is that a large sensor network can potentially consist of thousands or tens of thousands of sensors densely populated, with strict energy and complexity constraints. Therefore the design of any protocol or algorithm should come with precision and a quantifiable measure, and be based on a good understanding of the ultimate scalability limit. This proposal aims at bridging the gap between the fundamental limit studies and practical protocol design. The goal of the proposed research is to (1) derive capacity limits critical to the large class of data gathering sensor network applications; (2) develop practical distributed algorithms that use these limits as guidelines and can approach these limits; and (3) examine the actual achievable performance of these algorithms in a real sensor testbed setting. Consequently, there are three parts to the proposed research: fundamental capacity limits, distributed algorithms, and testbed experiments. A central theme of the proposed research is to bridge the gap between the theoretical achievability of fundamental limits and the optimality of practical network designs. The proposed design methodology is thus driven by capacity limit studies via novel modeling techniques. It provides a novel and powerful tool in the study of network scalability and feasibility. Under fundamental capacity limits, will study two capacity notions: the throughput capacity, defined within the context of many-to-one communication as the maximum achievable throughput when all nodes are communicating with a single receiver via either a single hop or multiple hops; and the lifetime capacity, defined as the maximum amount of data deliverable by a sensor network until the first sensor dies (due to energy depletion) or till a pre-specified percentage of sensors die. The study of these two capacity notions has direct implications on organizing communications within a network, e.g., whether clustering should be used and how big a cluster should be, how many data collecting base stations should there be and where should they be placed. This study will progress from simple idealized scenarios to increasingly more realistic and complex. Under distributed algorithms, will apply the capacity analysis to the design of distributed algorithms of energy efficient data dissemination, optimal clustering and efficient sensor sleep schedules. These algorithms will be designed to approach or approximate network capacities. Under the proposed research will also develop an experimental wireless sensor testbed for implementation and measurement purposes. The proposed research has a strong education aspect and involves collaboration with two research centers at the University of Michigan. Will seek close collaboration with the Wireless Integrated Micro-systems (WIMS) Center, an NSF ERC at the University of Michigan, and University of Michigan's Wu Manufacturing Research Center (WuMRC). Will incorporate state-of-the-art MEMS sensors currently being developed at WIMS and intelligent infotronics agent sensors being developed for automation systems by WuMRC into our sensor testbed. Collaboration with them will allow the PI to apply design methodology to different application contexts with realistic physical devices.
拟议的研究中心的设计方法用于大规模的无线传感器网络的数据收集,使用基本的容量限制的研究作为指导方针。 其动机是大型传感器网络可能由数千或数万个密集分布的传感器组成,具有严格的能量和复杂性限制。因此,任何协议或算法的设计都应该具有精确性和可量化的度量,并基于对最终可扩展性限制的良好理解。 该建议旨在弥合基本极限研究和实际协议设计之间的差距。 建议的研究的目标是(1)获得关键的大类数据收集传感器网络应用的容量限制;(2)开发实用的分布式算法,使用这些限制作为指导方针,并可以接近这些限制;(3)检查这些算法在真实的传感器测试平台设置的实际可实现的性能。 因此,有三个部分的建议的研究:基本容量限制,分布式算法,和试验台实验。 所提出的研究的一个中心主题是弥合基本极限的理论可验证性与实际网络设计的最优性之间的差距。 因此,所提出的设计方法是通过新的建模技术的容量限制研究。 它为研究网络的可扩展性和可行性提供了一种新颖而有力的工具。在基本容量限制下,将研究两个容量概念:吞吐量容量,定义在多对一通信的上下文中,当所有节点通过单跳或多跳与单个接收器通信时,可实现的最大吞吐量;以及寿命容量,定义为传感器网络在第一个传感器死亡(由于能量耗尽)之前或在预定百分比的传感器死亡之前可传递的最大数据量。对这两个容量概念的研究对网络内的通信组织有直接影响,例如,是否应该使用集群以及集群应该有多大,应该有多少数据收集基站以及它们应该放置在哪里。这项研究将从简单的理想化的情况下,越来越现实和复杂。在分布式算法下,将容量分析应用于能量有效的数据分发、最优聚类和高效的传感器睡眠调度的分布式算法设计。 这些算法将被设计为接近或近似网络容量。 根据拟议的研究,还将开发一个实验性的无线传感器测试平台,用于实施和测量目的。 拟议的研究具有很强的教育方面,涉及与密歇根大学的两个研究中心的合作。将寻求与无线集成微系统(WIMS)中心,密歇根大学的NSF ERC和密歇根大学的吴制造研究中心(WuMRC)的密切合作。将把WIMS目前正在开发的最先进的MEMS传感器和WuMRC为自动化系统开发的智能信息电子代理传感器纳入我们的传感器测试平台。 与他们的合作将使PI能够将设计方法应用于具有真实物理设备的不同应用环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mingyan Liu其他文献
A theoretical model to predict the rising trajectory of single bubble with zigzagging path in still water
预测静水中锯齿形单个气泡上升轨迹的理论模型
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.8
- 作者:
Lubin Zhang;Yongli Ma;Mingyan Liu - 通讯作者:
Mingyan Liu
Potentially commercialisable alga, emCoelastrella/em sp. SDEC-28, for stable growth and multiple product applications in pilot-scale seawater-wastewater cultivation
潜在可商业化的藻类,小球藻(Coelastrella)sp. SDEC - 28,用于在中试规模的海水 - 废水养殖中稳定生长以及多种产品应用
- DOI:
10.1016/j.algal.2025.104057 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:4.500
- 作者:
Zhen Xie;Huiying Chen;Meng Ma;Mingyan Liu;Haiyan Pei - 通讯作者:
Haiyan Pei
Gas-liquid mass transfer and reaction characteristics of gas–liquid-solid circulating micro-fluidized bed
- DOI:
10.1016/j.cej.2024.158249 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Hao Guo;Yongli Ma;Yan Sun;Mingyan Liu - 通讯作者:
Mingyan Liu
Experimental investigation of collision behavior of fluidized solid particles on the tube wall of a graphite evaporator by vibration signal analysis
- DOI:
10.1016/j.powtec.2016.12.067 - 发表时间:
2017-07-01 - 期刊:
- 影响因子:
- 作者:
Yue Ma;Mingyan Liu;Min An;Xiaoping Xu - 通讯作者:
Xiaoping Xu
Enantiomerization of helicenes on graphene-like surface: a DFT study
- DOI:
10.1007/s00214-025-03184-7 - 发表时间:
2025-04-10 - 期刊:
- 影响因子:1.500
- 作者:
Xunshan Liu;Huimin Duan;Yi Guo;Na Yang;Yongmiao Shen;Mingyan Liu;Chengshuo Shen - 通讯作者:
Chengshuo Shen
Mingyan Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mingyan Liu', 18)}}的其他基金
EAGER: Theory and Practice of Risk-Informed Cyber Insurance Policies: Risk Dependency, Risk Aggregation, and Active Threat Landscape
EAGER:风险知情网络保险政策的理论与实践:风险依赖性、风险聚合和主动威胁格局
- 批准号:
1939006 - 财政年份:2019
- 资助金额:
$ 42.19万 - 项目类别:
Standard Grant
CPS:Small:Collaborative Research: Incentivizing Desirable User Behavior in a Class of CPS
CPS:Small:协作研究:在一类 CPS 中激励期望的用户行为
- 批准号:
1739517 - 财政年份:2017
- 资助金额:
$ 42.19万 - 项目类别:
Standard Grant
TTP: Small: Network-Level Security Posture Assessment and Predictive Analytics: From Theory to Practice
TTP:小:网络级安全态势评估和预测分析:从理论到实践
- 批准号:
1616575 - 财政年份:2016
- 资助金额:
$ 42.19万 - 项目类别:
Standard Grant
CI-NEW: Collaborative Research: COVE-Computer Vision Exchange for Data, Annotations and Tools
CI-NEW:协作研究:COVE-数据、注释和工具的计算机视觉交换
- 批准号:
1628987 - 财政年份:2016
- 资助金额:
$ 42.19万 - 项目类别:
Standard Grant
TWC: Small: Understanding Network Level Malicious Activities: Classification, Community Detection and Inference of Security Interdependence
TWC:小:了解网络级恶意活动:分类、社区检测和安全依赖性推断
- 批准号:
1422211 - 财政年份:2014
- 资助金额:
$ 42.19万 - 项目类别:
Standard Grant
NeTS: Small: Collaborative Research: Playing the Devil's Advocate: The Profit Perspective in Secondary Spectrum Markets
NetS:小型:协作研究:扮演魔鬼代言人:二级频谱市场的利润视角
- 批准号:
1217689 - 财政年份:2012
- 资助金额:
$ 42.19万 - 项目类别:
Standard Grant
相似海外基金
Building Capacity for Older Adult-driven, Neighbourhood Social Programs
老年人驱动的邻里社会项目的能力建设
- 批准号:
497954 - 财政年份:2023
- 资助金额:
$ 42.19万 - 项目类别:
Optimizing research impact and building capacity for youth-driven research within the learning health system of an integrated youth services initiative
在综合青年服务倡议的学习健康系统内优化研究影响并建设青年驱动研究的能力
- 批准号:
484649 - 财政年份:2023
- 资助金额:
$ 42.19万 - 项目类别:
Fellowship Programs
L2M NSERC - Gravity-driven water filtration system with long-term durability and multi-pollutant removal capacity
L2M NSERC - 重力驱动水过滤系统,具有长期耐用性和多污染物去除能力
- 批准号:
580650-2023 - 财政年份:2022
- 资助金额:
$ 42.19万 - 项目类别:
Idea to Innovation
Building Capacity for a Community-Driven Indigenous Health Data Hub in Alberta: Legal and Logistical Planning for OCAP®-Aligned Alberta Health Services Data-Sharing
艾伯塔省社区驱动的土著健康数据中心的能力建设:OCAP® 一致的艾伯塔省卫生服务数据共享的法律和后勤规划
- 批准号:
468127 - 财政年份:2022
- 资助金额:
$ 42.19万 - 项目类别:
Miscellaneous Programs
Collaborative Research: CIBR: Building Capacity for Data-driven Neuroscience Research
合作研究:CIBR:数据驱动神经科学研究能力建设
- 批准号:
1935771 - 财政年份:2020
- 资助金额:
$ 42.19万 - 项目类别:
Standard Grant
SCC-PG: Building capacity for data-driven physical activity interventions in communities with depression and obesity hotspots
SCC-PG:在抑郁和肥胖热点社区中建设数据驱动的身体活动干预措施的能力
- 批准号:
1951378 - 财政年份:2020
- 资助金额:
$ 42.19万 - 项目类别:
Standard Grant
Capacity building in Africa via technology-driven research in algebraic and arithmetic geometry
通过技术驱动的代数和算术几何研究进行非洲能力建设
- 批准号:
EP/T001968/1 - 财政年份:2020
- 资助金额:
$ 42.19万 - 项目类别:
Research Grant
Collaborative Research: CIBR: Building Capacity for Data-driven Neuroscience Research
合作研究:CIBR:数据驱动神经科学研究能力建设
- 批准号:
1935749 - 财政年份:2020
- 资助金额:
$ 42.19万 - 项目类别:
Standard Grant
CNS Core: Medium: Thermodynamically-driven design of high capacity, practical DNA-based data storage systems
CNS 核心:中:高容量、实用的基于 DNA 的数据存储系统的热力学驱动设计
- 批准号:
1901324 - 财政年份:2019
- 资助金额:
$ 42.19万 - 项目类别:
Continuing Grant
Is sociality driven by an increased capacity for gene regulation?
社会性是由基因调控能力的增强驱动的吗?
- 批准号:
1754476 - 财政年份:2018
- 资助金额:
$ 42.19万 - 项目类别:
Standard Grant