Quantum Magnetism in Low-Dimensional Materials
低维材料中的量子磁性
基本信息
- 批准号:0240918
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-15 至 2007-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This theoretical research will study magnetic properties of materials and provide model-based computational support for experimental characterization tools such as Raman scattering, neutron scattering and nuclear magnetic resonance (NMR). The bulk of the study relies on two types of computational methods applied to many-body model Hamiltonians.The first is the series expansion method, which is based on developing high order perturbation theory or power-series expansions for thermodynamic properties in a suitable variable such as inverse temperature or ratio of coupling constants. When these expansion parameters are small and the series are convergent, a direct summation provides the desired answer. Pade approximants and related extrapolation methods are used to obtain thermodynamic quantities when the expansion parameters become large. These methods are known to work well provided one develops a long enough series and does not cross any phase boundaries. The singular properties associated with the phase transitions can be obtained as a limiting behavior from specially developed extrapolation schemes.The second method is quantum Monte Carlo simulations based on the stochastic series expansion technique. This is a stochastic method to sum up all the terms in a high temperature expansion of the partition function. Using recently developed "operator loop" updates, this method allows one to study fairly large finite-size systems down to low temperatures. These theoretical calculations will be used to study properties of novel and existing magnetic materials. These include the cuprate family of high temperature superconducting materials and several other organic and inorganic materials. We identify a number of recently synthesized square-planar antiferromagnetic materials and spatially anisotropic materials exhibiting unusual behavior, whose properties will be addressed. In order to have a greater impact on the understanding of real materials, we plan to continue our collaborations with electronic structure theorists and experimental groups.A second objective of this research is to develop, establish or confirm new ideas and concepts in strongly interacting many-particle systems. For example, the question of whether fluctuation dominated one-dimensional physics can carry over to higher dimensional systems will be addressed. Another question of interest is whether there exist two-dimensional spin models, with exotic phases and possibly fractional spin excitations. Specific models, whose properties will be calculated, are discussed.A third objective is to further develop and extend the computational methods themselves so that they can be used for a wider class of models and for a larger class of experimental properties. We will focus on dynamical properties of magnetic systems at finite temperatures, which would be most important in quantitatively understanding neutron scattering and NMR results. These computational studies provide excellent training for students and postdoctoral associates.%%%This theoretical research will study magnetic properties of materials and provide model-based computational support for experimental characterization tools such as Raman scattering, neutron scattering and nuclear magnetic resonance (NMR). The bulk of the study relies on two types of computational methods applied to many-body model Hamiltonians. These are series-expansion techniques and quantum Monte Carlo methods. These studies provide excellent training for students.***
该理论研究将研究材料的磁性,并为拉曼散射、中子散射和核磁共振(NMR)等实验表征工具提供基于模型的计算支持。 大部分的研究依赖于两种类型的计算方法适用于多体模型哈密顿量。第一种是级数展开法,这是基于发展高阶微扰理论或幂级数展开的热力学性质在一个合适的变量,如反温度或耦合常数的比例。当这些展开参数很小时,级数收敛,直接求和提供了所需的答案。 Pade近似和相关的外推方法被用来获得热力学量时,膨胀参数变得很大。 已知这些方法工作良好,只要开发足够长的系列并且不跨越任何相边界。 与相变相关的奇异性可以通过特殊的外推方法得到。第二种方法是基于随机级数展开技术的量子Monte Carlo模拟。 这是一种随机方法,用于对配分函数的高温展开式中的所有项进行求和。 使用最近开发的“运营商循环”的更新,这种方法允许研究相当大的有限尺寸的系统到低温。这些理论计算将用于研究新型和现有磁性材料的性能。 这些包括铜酸盐家族的高温超导材料和其他几种有机和无机材料。 我们确定了一些最近合成的正方形平面反铁磁材料和空间各向异性材料表现出不寻常的行为,其属性将得到解决。 为了对真实的材料的理解产生更大的影响,我们计划继续与电子结构理论家和实验小组合作。本研究的第二个目标是发展、建立或证实强相互作用多粒子系统中的新思想和概念。 例如,波动主导的一维物理是否可以延续到更高维的系统的问题将得到解决。 另一个感兴趣的问题是是否存在二维自旋模型,奇异相位和可能的分数自旋激发。 第三个目标是进一步发展和扩展计算方法本身,使它们能够用于更广泛的模型和更大的实验性质。 我们将集中在有限温度下的磁性系统的动力学性质,这将是最重要的定量理解中子散射和核磁共振结果。这些计算研究为学生和博士后提供了极好的培训。%该理论研究将研究材料的磁性,并为拉曼散射、中子散射和核磁共振(NMR)等实验表征工具提供基于模型的计算支持。 大部分的研究依赖于两种类型的计算方法应用于多体模型哈密顿。 这些是级数展开技术和量子蒙特卡罗方法。 这些研究为学生提供了很好的培训。*
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajiv Singh其他文献
Engineering amyloid fibrils from β-solenoid proteins for biomaterials applications.
从 β-螺线管蛋白中工程化淀粉样原纤维,用于生物材料应用。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:17.1
- 作者:
Maria D R Peralta;Á. Karsai;A. Ngo;Catherine Sierra;Kai T. Fong;N. R. Hayre;Nima Mirzaee;Krishnakumar M. Ravikumar;Alexander Kluber;Xi Chen;Gang;M. Toney;Rajiv Singh;D. Cox - 通讯作者:
D. Cox
Efficient Dehazing Technique for Hazy Images using DCP and WAF
使用 DCP 和 WAF 的模糊图像高效去雾技术
- DOI:
10.5120/ijca2018916991 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
M. Monika;Lavi Tyagi;Rajiv Singh - 通讯作者:
Rajiv Singh
Modeling the self-assembly dynamics of macromolecular protein aggregates underlying neurodegenerative disorders
模拟神经退行性疾病中大分子蛋白聚集体的自组装动力学
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Zhenyuan Zhao;Rajiv Singh;Arghya Barman;N. Johnson;Rajeev Prabhakar - 通讯作者:
Rajeev Prabhakar
Wind Turbine Standards and Certification: Indian Perspective
风力发电机标准和认证:印度视角
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Rajiv Singh;Ashutosh Kumar Singh;Padmanabh Thakur - 通讯作者:
Padmanabh Thakur
The effect of socioeconomic deprivation on 12 month Traumatic Brain Injury (TBI) outcome
社会经济剥夺对 12 个月创伤性脑损伤 (TBI) 结局的影响
- DOI:
10.1080/02699052.2020.1715481 - 发表时间:
2020 - 期刊:
- 影响因子:1.9
- 作者:
T. Humphries;S. Ingram;S. Sinha;F. Lecky;J. Dawson;Rajiv Singh - 通讯作者:
Rajiv Singh
Rajiv Singh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajiv Singh', 18)}}的其他基金
Accel-Net Implementation: Accel-Net Implementation for Quantum Materials
Accel-Net 实施:量子材料的 Accel-Net 实施
- 批准号:
2201516 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Highly Frustrated Magnetism 2018 Conference
高度沮丧的磁力2018年会议
- 批准号:
1801046 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Computational Studies of Entanglement and Thermodynamics of Strongly Interacting Spin Systems
强相互作用自旋系统的纠缠和热力学的计算研究
- 批准号:
1306048 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Continuing Grant
SBIR Phase I: Low Cost Scalable Manufacturing of Patterned Sapphire Substrates (PSS) for High Efficiency LEDs
SBIR 第一阶段:用于高效率 LED 的图案化蓝宝石衬底 (PSS) 的低成本可扩展制造
- 批准号:
1248745 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Frustrated Magnetism in Triangular Geometries with Heisenberg and Multi-spin Ring Exchanges
海森堡和多自旋环交换三角形几何中的受抑磁力
- 批准号:
1004231 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
US-Egypt Cooperative Research: Processing of Silica Fumes From Ferrosilicon Industries into Chemical Mechanical Polishing Nanoslurries for Advanced Semiconductor Manufacturing
美国-埃及合作研究:将硅铁工业中的硅粉加工成用于先进半导体制造的化学机械抛光纳米浆料
- 批准号:
0527560 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
NER: Novel, High Throughput Continuous Nanoparticle Classifier (CNC)
NER:新型高通量连续纳米颗粒分级机 (CNC)
- 批准号:
0210534 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Quantum Disorder and Spin-Gaps In Models and Real Materials
模型和真实材料中的量子无序和自旋间隙
- 批准号:
9986948 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Continuing Grant
Correlations, Fluctuations and Elementary Excitations in Insulating and Doped Quantum Magnets
绝缘和掺杂量子磁体中的相关性、涨落和基本激发
- 批准号:
9616574 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Low Dimensional Quantum Gases: Resonance, Quantum magnetism and Non-Abelian vortices
低维量子气体:共振、量子磁性和非阿贝尔涡旋
- 批准号:
288179-2013 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Low Dimensional Quantum Gases: Resonance, Quantum magnetism and Non-Abelian vortices
低维量子气体:共振、量子磁性和非阿贝尔涡旋
- 批准号:
288179-2013 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Low Dimensional Quantum Gases: Resonance, Quantum magnetism and Non-Abelian vortices
低维量子气体:共振、量子磁性和非阿贝尔涡旋
- 批准号:
288179-2013 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Low Dimensional Quantum Gases: Resonance, Quantum magnetism and Non-Abelian vortices
低维量子气体:共振、量子磁性和非阿贝尔涡旋
- 批准号:
288179-2013 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Low Dimensional Quantum Gases: Resonance, Quantum magnetism and Non-Abelian vortices
低维量子气体:共振、量子磁性和非阿贝尔涡旋
- 批准号:
288179-2013 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Magnetism and superconductivity in low dimensional quantum materials
低维量子材料的磁性和超导性
- 批准号:
370039-2008 - 财政年份:2008
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Magnetism and superconductivity in low-dimensional quantum
低维量子中的磁性和超导
- 批准号:
352413-2007 - 财政年份:2007
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Neutron and X-ray Scattering Studies of Low Dimensional Quantum Magnetism
低维量子磁学的中子和X射线散射研究
- 批准号:
334321-2006 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Neutron and X-ray Scattering Studies of Low Dimensional Quantum Magnetism
低维量子磁学的中子和X射线散射研究
- 批准号:
334321-2006 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Magnetism of Quantum Spins Systems in Low Dimensions
低维量子自旋系统的磁性
- 批准号:
0305371 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing grant