Hidden Instabilities due to Coexistence Phenomenon in Autoparametric Excitation

自参激励中的共存现象导致隐藏的不稳定性

基本信息

  • 批准号:
    0243483
  • 负责人:
  • 金额:
    $ 7.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-05-01 至 2006-04-30
  • 项目状态:
    已结题

项目摘要

When an engineering structure is loaded by a vibratory source such as amotor, resonances occur in the neighborhood of normal modal vibrations. These resonances areoften undesirable, resulting in large deformations and possible destructive effects. Ifnonlinear effects are taken into account in the engineering model, the normal mode vibrations areperiodic motions known as nonlinear normal modes.This work concerns nonlinear normal modes in two degree of freedom systems.Such systems are subject to a phenomenon known as autoparametric excitation. Thisinvolves energy being transferred between nonlinear normal modes in a resonant fashion, with thepossibility that a nonlinear normal mode may become unstable. If a structure were to be designed tooperate in a particular vibrational mode, and if that mode turned out to be unstable, the designwould be a failure.The usual procedure for determining whether a nonlinear normal mode isstable or not involves using a mathematical theory known as Floquet theory. This offerspredictions of instability based on for example numerical integration of the differential equations ofmotion. In the proposed research, we address a situation (called coexistence) in which Floquet theory predicts stability, but which involves instabilities which would result if the model was changed slightly.Since no engineering model perfectly represents a physical situation, such instabilities in models withcoexistence are inevitable.Although coexistence occurs in a variety of models of physical systems verylittle research has been aimed at understanding the associated instabilities. This project aims 1) todetermine which systems exhibit coexistence (from a general class of systems), and 2) to examine thenature of the resulting instability.This project will fund a graduate research student at the doctoral level andthus will integrate research and education. The results of the research will be broadly disseminated bybeing presented at a scientific/engineering meeting and published in a scientific journal. Inthis way it is hoped that engineers will be made aware of possible design trouble that could be caused by thehidden instabilities which are the subject of this research.
当一个工程结构受到振动源(如电机)的载荷时,共振发生在正模态振动的邻域。这些共振通常是不希望的,导致大的变形和可能的破坏性影响。如果在工程模型中考虑非线性效应,则正常模态振动是称为非线性正常模态的周期性运动。本文研究两自由度系统的非线性正态模态。这样的系统受到一种称为自参数激励的现象的影响。这涉及到以共振方式在非线性正态模式之间传递能量,非线性正态模式可能变得不稳定。如果一个结构被设计成在特定的振动模式下运行,如果这种模式被证明是不稳定的,那么这个设计就是失败的。确定非线性正态模是否稳定的通常程序涉及使用称为Floquet理论的数学理论。这提供了不稳定性的预测,例如基于运动微分方程的数值积分。在提议的研究中,我们解决了一种情况(称为共存),在这种情况下,Floquet理论预测了稳定性,但如果模型稍微改变,就会导致不稳定性。由于没有一个工程模型能完美地代表一个物理情况,这种共存模型的不稳定性是不可避免的。尽管共存存在于各种物理系统模型中,但很少有研究旨在理解相关的不稳定性。这个项目的目的是1)确定哪些系统表现共存(从一般类型的系统),以及2)检查由此产生的不稳定性的性质。该项目将资助一名博士研究生,从而将研究和教育结合起来。研究结果将通过在科学/工程会议上展示和在科学杂志上发表而广泛传播。通过这种方式,希望工程师们能够意识到可能由隐藏的不稳定性引起的设计问题,这些不稳定性是本研究的主题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Rand其他文献

About a class of nonlinear oscillators with amplitude-independent frequency
  • DOI:
    10.1007/s11071-013-0982-9
  • 发表时间:
    2013-07-14
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Ivana Kovacic;Richard Rand
  • 通讯作者:
    Richard Rand
Resonant Capture and Separatrix Crossing in Dual-Spin Spacecraft
  • DOI:
    10.1023/a:1008393913849
  • 发表时间:
    1999-02-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Richard Haberman;Richard Rand;Thomas Yuster
  • 通讯作者:
    Thomas Yuster
Autoparametric quasiperiodic excitation
  • DOI:
    10.1016/j.ijnonlinmec.2007.12.015
  • 发表时间:
    2008-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Si Mohamed Sah;Geoffrey Recktenwald;Richard Rand;Mohamed Belhaq
  • 通讯作者:
    Mohamed Belhaq
Dynamics of a delay limit cycle oscillator with self-feedback
  • DOI:
    10.1007/s11071-015-2169-z
  • 发表时间:
    2015-05-28
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Lauren Lazarus;Matthew Davidow;Richard Rand
  • 通讯作者:
    Richard Rand
Straight-line backbone curve
  • DOI:
    10.1016/j.cnsns.2012.11.031
  • 发表时间:
    2013-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ivana Kovacic;Richard Rand
  • 通讯作者:
    Richard Rand

Richard Rand的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Rand', 18)}}的其他基金

Collaborative Research: Non-thermal Radio Halos of Spiral Galaxies as Clues to Galaxy Evolution
合作研究:螺旋星系的非热射电晕作为星系演化的线索
  • 批准号:
    1616513
  • 财政年份:
    2016
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Gaseous Halos of Nearby Galaxies as Clues to Galaxy Evolution
合作研究:附近星系的气态晕作为星系演化的线索
  • 批准号:
    0908106
  • 财政年份:
    2009
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Measuring Radially Varying Pattern Speeds in Spiral Galaxies
测量螺旋星系中径向变化的图案速度
  • 批准号:
    0807032
  • 财政年份:
    2008
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Continuing Grant
Measuring Robust Pattern Speeds in a Large Sample of Spiral Galaxies
测量大量螺旋星系样本中的鲁棒模式速度
  • 批准号:
    0306958
  • 财政年份:
    2003
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Continuing Grant
CAREER: The Interstellar Disk-Halo Connection in Edge-on Galaxies - Bringing Research to a Large Audience
职业:边缘星系中的星际盘-光环连接 - 将研究成果带给广大受众
  • 批准号:
    9986113
  • 财政年份:
    2000
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
US-Morocco Cooperative Research: Theoretical and Experimental Study of Quasiperiodically Forced Convective Instabilities in Fluids
美国-摩洛哥合作研究:流体中准周期强迫对流不稳定性的理论与实验研究
  • 批准号:
    9906084
  • 财政年份:
    1999
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Nonlinear Dynamics Using Normal Forms and Computer Algebra
使用范式和计算机代数的非线性动力学
  • 批准号:
    8509481
  • 财政年份:
    1986
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant

相似海外基金

Microscale radiography of hydrodynamic instabilities mitigation in magnetized high-density laser plasmas
磁化高密度激光等离子体中流体动力学不稳定性缓解的微尺度射线照相
  • 批准号:
    24K06988
  • 财政年份:
    2024
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigating spatio-temporal instabilities in next-generation lasers
研究下一代激光器的时空不稳定性
  • 批准号:
    FT230100388
  • 财政年份:
    2024
  • 资助金额:
    $ 7.99万
  • 项目类别:
    ARC Future Fellowships
Comprehensive numerical analysis of ICRF heating with fast-ion-driven instabilities in toroidal plasmas
对环形等离子体中快速离子驱动不稳定性的 ICRF 加热进行全面数值分析
  • 批准号:
    24K17032
  • 财政年份:
    2024
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mathematical framework for novel non-porous viscous fingering instabilities
新型无孔粘性指法不稳定性的数学框架
  • 批准号:
    EP/Y021959/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Research Grant
The Role of Complex Fluids on the Flow and Instabilities of Particle-Laden Liquids
复杂流体对含颗粒液体的流动和不稳定性的作用
  • 批准号:
    2335195
  • 财政年份:
    2024
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Instabilities in bilayer fluid flows
双层流体流动的不稳定性
  • 批准号:
    2883190
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Studentship
Nonlocal Magneto-Curvature Instabilities and their Associated Nonlinear Transport in Astrophysical Disks
天体物理盘中的非局域磁曲率不稳定性及其相关的非线性输运
  • 批准号:
    2308839
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Submesoscale instabilities and the forward energy cascade in seamount wakes
海山尾流中的亚尺度不稳定性和前向能量级联
  • 批准号:
    2242182
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
GEM: Fundamental Properties of Dawnside Auroral Polarization Streams and Their Role in Magnetosphere-Ionosphere Instabilities and Dramatic Events
GEM:黎明极光偏振流的基本特性及其在磁层-电离层不稳定性和戏剧性事件中的作用
  • 批准号:
    2247034
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
CAREER: Identifying and Controlling Interfacial and Structural Instabilities in Transition Metal Oxide Cathodes for Na-ion Batteries
职业:识别和控制钠离子电池过渡金属氧化物阴极的界面和结构不稳定性
  • 批准号:
    2402216
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了