Regression and Deconvolution with Heteroscedastic Measurement Error
异方差测量误差的回归和反卷积
基本信息
- 批准号:0304900
- 负责人:
- 金额:$ 21.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-15 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the first component of the research, "Unbiased Estimation and Corrected-Score Methods for Heteroscedastic Measurement Error with Replicate Measurements," the investigator develops a general approach to statistical inference when data are measured with error. Starting with the assumptions that a valid statistical estimation method is known for error-free data, and that replicate measurements are made of the error-prone variate, the investigator shows how to modify the usual estimation method to eliminate bias induced by measurement error. The key technical advances include the accommodation of heteroscedastic measurement errors and replicate measurements, as well as development of a new Monte Carlo method of unbiased estimation of a normal mean. The author applies the general approach to m-estimation and density estimation, thereby incorporating a broad scope of statistical inference problems. In the second component of the research, "Deconvolution with Auxiliary Data," the investigator explores approaches to the deconvolution problem that exploit auxiliary variables correlated to the variable measured with error. The auxiliary variables play a roll akin to that of instrumental variables and are used to reduce variability in the deconvolution estimates.The astronomer's measurements of distances to galaxies, the epidemiologist's measurements of subjects' blood pressures, the environmental scientist's measurements of daily air pollution levels, and the sociologist's measurements of subjects' behaviors and attitudes share in common the fact that all are less than perfectly accurate. Measurement error is a pervasive problem in the analysis and interpretation of data that crosses disciplinary boundaries. It is a source of uncertainty that can bias estimates derived from data and lead to erroneous inferences. In this project the investigator develops theory and methods for statistical inference when data are measured with error. The research provides a new solution to a long-standing problem in statistical inference, and uses that solution to provide a comprehensive approach to the analysis of data measured with error. The primary benefit is improved statistical inference in the form of less biased and more accurate estimates calculated from scientific data. Because the prevalence of data measured with error is widespread, the impact of the research will be similarly widespread, finding immediate applications not only to the scientific fields mentioned above, but numerous others as well.
在研究的第一个组成部分,“无偏估计和校正分数方法异方差测量误差与重复测量,”研究人员开发了一种通用的方法来统计推断时,数据测量误差。假设一个有效的统计估计方法是已知的无误差的数据,重复测量的误差倾向的变量,调查显示如何修改通常的估计方法,以消除偏差引起的测量误差。关键的技术进步包括适应异方差测量误差和重复测量,以及发展一种新的蒙特卡罗方法的无偏估计的正态均值。作者适用于一般的方法m-估计和密度估计,从而纳入了广泛的统计推断问题。在研究的第二部分,“用辅助数据反卷积”,研究人员探讨了利用与误差测量变量相关的辅助变量的反卷积问题的方法。辅助变量的作用类似于工具变量,用于减少反卷积估计的可变性。天文学家测量到星系的距离,流行病学家测量受试者的血压,环境科学家测量每天的空气污染水平,社会学家对受试者行为和态度的测量有一个共同点,那就是所有的测量都不完全准确。测量误差是跨学科数据分析和解释中的一个普遍问题。它是一个不确定性的来源,可能会使从数据中得出的估计产生偏差,并导致错误的推断。在这个项目中,研究人员开发的理论和方法的统计推断时,数据测量误差。该研究为统计推断中的一个长期存在的问题提供了一种新的解决方案,并使用该解决方案提供了一种全面的方法来分析有误差的测量数据。主要好处是改进统计推断,根据科学数据计算出的估计偏差更小、更准确。由于带有误差的测量数据的普遍性是普遍存在的,因此研究的影响也将同样广泛,不仅可以立即应用于上述科学领域,还可以应用于许多其他领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonard Stefanski其他文献
Leonard Stefanski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonard Stefanski', 18)}}的其他基金
Variable Selection via Measurement Error Modeling
通过测量误差建模进行变量选择
- 批准号:
1406456 - 财政年份:2014
- 资助金额:
$ 21.77万 - 项目类别:
Continuing Grant
EMSW21-VIGRE Project: VIGRE-II - "Integrated and Mentored Program of Research and Education in Statistical Sciences" (IMPRESS)
EMSW21-VIGRE 项目:VIGRE-II -“统计科学研究与教育综合和指导计划”(IMPRESS)
- 批准号:
0354189 - 财政年份:2004
- 资助金额:
$ 21.77万 - 项目类别:
Continuing Grant
Robust Statistics for Correlated Data
相关数据的稳健统计
- 批准号:
0204297 - 财政年份:2002
- 资助金额:
$ 21.77万 - 项目类别:
Continuing Grant
Mathematical Sciences: Measurement Error and Statistical Inference
数学科学:测量误差和统计推断
- 批准号:
9423706 - 财政年份:1995
- 资助金额:
$ 21.77万 - 项目类别:
Standard Grant
Mathematical Sciences: Statistics Inference in the Presence of Measurement Error: II
数学科学:存在测量误差的统计推断:II
- 批准号:
9200915 - 财政年份:1992
- 资助金额:
$ 21.77万 - 项目类别:
Continuing Grant
Mathematical Sciences: Statistical Inference in the Presenceof Measurement Error
数学科学:存在测量误差的统计推断
- 批准号:
8613681 - 财政年份:1986
- 资助金额:
$ 21.77万 - 项目类别:
Standard Grant
相似海外基金
A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
- 批准号:
24K07389 - 财政年份:2024
- 资助金额:
$ 21.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deconvolution and interruption of the cancer-neuro-immune axis facilitating brain metastases
癌症-神经-免疫轴的反卷积和中断促进脑转移
- 批准号:
10747824 - 财政年份:2023
- 资助金额:
$ 21.77万 - 项目类别:
Collaborative Research: Elements: Enabling Particle and Nuclear Physics Discoveries with Neural Deconvolution
合作研究:元素:通过神经反卷积实现粒子和核物理发现
- 批准号:
2311667 - 财政年份:2023
- 资助金额:
$ 21.77万 - 项目类别:
Standard Grant
Deconvolution of Galbulimima bark pharmacology through chemical synthesis and target assignment
通过化学合成和目标分配对 Galbulimima 树皮药理学进行解卷积
- 批准号:
10682293 - 财政年份:2023
- 资助金额:
$ 21.77万 - 项目类别:
Deconvolution of Physicochemical Properties Contributing to Passive Diffusion of Depsipeptides
有助于缩酚肽被动扩散的物理化学性质的反卷积
- 批准号:
10607589 - 财政年份:2023
- 资助金额:
$ 21.77万 - 项目类别:
Collaborative Research: Elements: Enabling Particle and Nuclear Physics Discoveries with Neural Deconvolution
合作研究:元素:通过神经反卷积实现粒子和核物理发现
- 批准号:
2311666 - 财政年份:2023
- 资助金额:
$ 21.77万 - 项目类别:
Standard Grant
Development of deconvolution method for bulk RNA-Seq by conditional variational autoencoder
通过条件变分自动编码器开发批量 RNA-Seq 的反卷积方法
- 批准号:
23K11302 - 财政年份:2023
- 资助金额:
$ 21.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of Cell-type Deconvolution Method in Bulk Epigenome Data
大量表观基因组数据中细胞类型反卷积方法的建立
- 批准号:
23K11312 - 财政年份:2023
- 资助金额:
$ 21.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A web-based platform for robust single-cell analysis, bulk data deconvolution and system-level analysis
基于网络的平台,用于强大的单细胞分析、批量数据反卷积和系统级分析
- 批准号:
10766073 - 财政年份:2023
- 资助金额:
$ 21.77万 - 项目类别:
Generation of single cell multi-omics computational methods for biological insights and novel deconvolution techniques for bulk omics data
生成用于生物学见解的单细胞多组学计算方法和用于批量组学数据的新型反卷积技术
- 批准号:
2764861 - 财政年份:2022
- 资助金额:
$ 21.77万 - 项目类别:
Studentship














{{item.name}}会员




