A Unified Simulation and Fault Environment for Mixed Signal Systems including MEMS Components

适用于包括 MEMS 组件的混合信号系统的统一仿真和故障环境

基本信息

  • 批准号:
    0306464
  • 负责人:
  • 金额:
    $ 26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-15 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

Embedded microchip design is becoming prevalent in our daily lives and continues to play an important role in the security and health of our nation. An embedded design by definition is an electronic system that contains a computer processor (microprocessor), yet we do not think of them as computers because the computer is hidden or "embedded" in the product. Homes in the United States have an average of 30 to 40 microprocessors, yet only 45% of these homes have a desktop computer. The rest of these microprocessors are embedded in appliances. Examples of embedded systems include the computer controlled fuel injectors in automobiles, control mechanisms in toasters and washing machines, a remote control for an unmanned spacecraft, or liquid sensing devices such as those used to monitor biological fluids for illicit drugs or hazardous chemicals in the human body. The tiny size of these devices makes them very attractive because they are light and portable. In health applications, these devices can be injected into the human body and used to diagnose and monitor patients in remote areas that do not have a nearby hospital. They can even reduce expensive hospital stays by dispensing the correct amount of a drug in a patient on a time schedule without any human intervention.Applications of embedded systems can be designed using many different scientific principles such as chemical, biological, optical, electronic and mechanical engineering theory all in one product. A single microchip that uses this multiple discipline design technique is called a "MEMS", micro-electromechanical device. Thus, the multidisciplinary nature of MEMS requires that many specialists work together and understand how his or her portion of the design will interact and interconnect with all the other parts of the design. This presents a host of problems with respect to producing low-cost, reliable and safe products. Consider the MEMS device for monitoring illicit drugs or hazardous chemicals in the human body. This presents a very harsh environment for the device to operate in since these devices are subject to corrosion and contamination. The device could cause harm if its shelf-life and lifetime use properties were not tested. In defense systems, MEMS chips aboard missiles allow the missile to communicate with the command center and report the exact speed and position coordinates of the missile. Having this type of functionality allows the trajectory of the missile to be modified in flight to provide exact precision on a target and minimizes civilian casualties. If the device fails, it could cause erratic behavior that could result in catastrophic results. From the manufacturing perspective the prevalent issues for developing MEMS are the technology risk and cost of production. If good repeatability and reliability testing for life testing are not developed, the production cost of MEMS devices could be prohibitive and not practical for consumer products.In summary, the major problems with developing this technology include: (a) The interdisciplinary nature of the design requiring many different skill sets of designers that understand how his or her portion of the design will interact and interconnect with all the other portions of the design. (b) Developing testing methods for reliability and safety and (c) Developing low-cost manufacturing methods that are repeatable and reliable so that the final product is affordable. The research work will focus on developing a simulation methodology to help designers develop and perform robust testing on MEMS designs across multiple scientific and engineering disciplines. Consider an electronic control and communication system to control and correct the flight path of a missile in flight. An electrical engineer implements the electronic design, while the sensors that track the position of the missile and actuators that move the wings on the missile are developed by mechanical engineers. The boundary where these two designs connect is a known source of errors due to the lack of understanding between the design disciplines. Using simulation allows low cost experimentation on the design before any expenditure is made on real physical hardware; however, the simulation CAD tools must work across many scientific and engineering disciplines to be effective. This presents a persistent problem for today's MEMs chip designers.The simulator software being developed by the Investigators will be able to perform thousands of experiments on software models of a MEMS device. The Investigators will develop a simulation environment that allows different engineering disciplines to use the same simulator. The simulations will find catastrophic conditions over all the operating regions and achieve this without requiring days of computer time or special supercomputers. This allows an engineer to observe the cause and effect relationships of the system parameters that interacted to create an undesirable condition. By understanding the type of errors that can occur, the designer can then correct the design before it goes into production. Finally, many outstanding engineers have been displaced by our country's recent economic situation. The research team will be complemented with unemployed engineers and offer them an opportunity to retrain and re-tool so they can become contributors to this crucial emerging technology.
嵌入式微芯片设计在我们的日常生活中变得越来越普遍,并继续在我们国家的安全和健康中发挥重要作用。根据定义,嵌入式设计是包含计算机处理器(微处理器)的电子系统,但我们不认为它们是计算机,因为计算机是隐藏的或“嵌入”在产品中。美国家庭平均拥有30到40个微处理器,但其中只有45%的家庭拥有台式电脑。其余的微处理器都嵌入到设备中。嵌入式系统的例子包括汽车上由计算机控制的燃油喷射器、烤面包机和洗衣机中的控制机构、无人驾驶航天器的遥控器,或用于监测生物液体中非法药物或人体有害化学物质的液体传感设备。这些设备的微小尺寸使它们非常有吸引力,因为它们很轻,便于携带。在医疗应用中,这些设备可以被注射到人体内,用于诊断和监测附近没有医院的偏远地区的病人。它们甚至可以在没有任何人为干预的情况下,按时给病人分配正确剂量的药物,从而减少昂贵的住院时间。嵌入式系统的应用程序可以在一个产品中使用许多不同的科学原理,如化学,生物,光学,电子和机械工程理论来设计。使用这种多学科设计技术的单个微芯片被称为“MEMS”,即微机电设备。因此,MEMS的多学科性质要求许多专家一起工作,并了解他或她的设计部分如何与设计的所有其他部分相互作用和互连。这在生产低成本、可靠和安全的产品方面提出了许多问题。考虑用于监测人体非法药物或危险化学品的MEMS设备。这为设备提供了一个非常恶劣的环境,因为这些设备容易受到腐蚀和污染。如果没有测试其保质期和使用寿命,该设备可能会造成伤害。在防御系统中,导弹上的MEMS芯片允许导弹与指挥中心通信,并报告导弹的准确速度和位置坐标。拥有这种类型的功能允许导弹的弹道在飞行中被修改,以提供对目标的精确精度和最小化平民伤亡。如果设备发生故障,可能会导致不稳定的行为,从而导致灾难性的后果。从制造的角度来看,发展MEMS的主要问题是技术风险和生产成本。如果不开发用于寿命测试的良好可重复性和可靠性测试,MEMS器件的生产成本可能会令人望而却步,并且不适合消费产品。总之,开发这种技术的主要问题包括:(a)设计的跨学科性质要求设计师掌握许多不同的技能,了解他或她的设计部分将如何与所有其他设计部分相互作用和相互联系。(b)发展可靠性和安全性的测试方法;(c)发展可重复和可靠的低成本制造方法,使最终产品能够负担得起。研究工作将侧重于开发一种仿真方法,以帮助设计师开发和执行跨多个科学和工程学科的MEMS设计的稳健测试。考虑一个电子控制和通信系统来控制和纠正飞行中的导弹的飞行路径。电气工程师实现了电子设计,而跟踪导弹位置的传感器和移动导弹机翼的驱动器则由机械工程师开发。由于缺乏对设计学科之间的理解,这两种设计连接的边界是一个已知的错误来源。使用仿真可以在实际物理硬件上进行任何支出之前对设计进行低成本实验;然而,仿真CAD工具必须在许多科学和工程学科中工作才能有效。这为当今的MEMs芯片设计师提出了一个持久的问题。研究人员正在开发的模拟器软件将能够在MEMS设备的软件模型上进行数千次实验。研究人员将开发一个模拟环境,允许不同的工程学科使用相同的模拟器。模拟将发现所有操作区域的灾难性条件,并且不需要几天的计算机时间或特殊的超级计算机就能实现这一目标。这使工程师能够观察到系统参数之间的因果关系,这些参数相互作用产生了不希望出现的情况。通过了解可能发生的错误类型,设计师可以在设计投入生产之前对其进行纠正。最后,许多优秀的工程师被我国最近的经济形势所取代。该研究团队将由失业的工程师组成,并为他们提供再培训和重新装备的机会,使他们能够成为这一关键新兴技术的贡献者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karen Panetta其他文献

P26-008-23 iDINE: A Database for Benchmarking Nutritional Dietary Assessment
  • DOI:
    10.1016/j.cdnut.2023.101176
  • 发表时间:
    2023-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Erin Hennessy;Shreyas Kamath;Sos Agian;Eleanor Shonkoff;Christina Economos;Kenneth Chui;Abigail Harrison;Srijith Rajeev;Abigail Stone;Karen Panetta
  • 通讯作者:
    Karen Panetta

Karen Panetta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karen Panetta', 18)}}的其他基金

RAPID: A Smart and Mobile Sensor Fusion Framework for Earthquake Hazard Reduction, Situational Assessment, and Relief Efforts
RAPID:用于减少地震灾害、态势评估和救灾工作的智能移动传感器融合框架
  • 批准号:
    1942053
  • 财政年份:
    2019
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
FAST-TRAC: Identifying and Overcoming Barriers to Advanced Degree Attainment for Low Income Engineering Students
FAST-TRAC:识别并克服低收入工程专业学生获得高级学位的障碍
  • 批准号:
    1564987
  • 财政年份:
    2016
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
INDIVIDUAL: Nomination of Dr. Karen Panetta for Innovations in Engineering Education Mentoring for Attracting and Retaining Women in Engineering through her Nerd Girls Program
个人:提名凯伦·帕内塔 (Karen Panetta) 博士为工程教育指导创新,通过她的书呆子女孩计划吸引和留住工程领域的女性
  • 批准号:
    1036620
  • 财政年份:
    2012
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
CAREER: Robust Behavioral Fault Simulation Algorithms for Multilevel Simulation
职业:用于多级仿真的鲁棒行为故障仿真算法
  • 批准号:
    9733584
  • 财政年份:
    1998
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Compression and Interaction Algorithms for Modeling and Simulation Environments
用于建模和仿真环境的压缩和交互算法
  • 批准号:
    9528194
  • 财政年份:
    1996
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Model Based Fault Detection and Diagnosis for Planetary Exploration Rovers Using Inverse Simulation
使用逆仿真的基于模型的行星探索漫游车故障检测和诊断
  • 批准号:
    2279886
  • 财政年份:
    2020
  • 资助金额:
    $ 26万
  • 项目类别:
    Studentship
Evaluation of earthquake rupture process at the Nankai Trough by integrated method of fault material analysis and numerical simulation
断层材料分析与数值模拟综合方法评价南海海槽地震破裂过程
  • 批准号:
    19K04039
  • 财政年份:
    2019
  • 资助金额:
    $ 26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Why did the Kumamoto earthquake stop within the Aso Caldera?: Termination of fault rupture explored by geodetic observation and numerical simulation
为什么熊本地震在阿苏破火山口内停止?:通过大地测量观测和数值模拟探讨断层破裂的终止
  • 批准号:
    18K03810
  • 财政年份:
    2018
  • 资助金额:
    $ 26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ground motion simulation for multi-fault event and mechanism of structual fatal damage due to ground motion duration
多断层事件地震动模拟及地震动持续时间造成结构致命破坏的机制
  • 批准号:
    17H03297
  • 财政年份:
    2017
  • 资助金额:
    $ 26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
PREEVENTS Track 2: 3D Nonlinear Simulation of Large Earthquakes on the Southern San Andreas Fault
预防事件轨道 2:南圣安地列斯断层大地震的 3D 非线性模拟
  • 批准号:
    1664203
  • 财政年份:
    2017
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
New Methods of Fault Simulation and Location for Smart Grids Based on Synchronized Measurements
基于同步测量的智能电网故障模拟与定位新方法
  • 批准号:
    1128383
  • 财政年份:
    2012
  • 资助金额:
    $ 26万
  • 项目类别:
    Standard Grant
EMT/QIS: Robust Quantum Simulation Techniques for Fault-Tolerant Quantum Computation
EMT/QIS:用于容错量子计算的鲁棒量子模拟技术
  • 批准号:
    0829937
  • 财政年份:
    2008
  • 资助金额:
    $ 26万
  • 项目类别:
    Continuing Grant
Modeling and real-time simulation of numanned aerial vehicals (UAVs) for fault-tolerant cooperative control
用于容错协作控制的无人飞行器 (UAV) 建模和实时仿真
  • 批准号:
    368344-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 26万
  • 项目类别:
    University Undergraduate Student Research Awards
FPGA-based fault simulation of transistor level faults at gate level with optimized mapping
基于 FPGA 的门级晶体管级故障模拟,具有优化映射
  • 批准号:
    249639-2002
  • 财政年份:
    2006
  • 资助金额:
    $ 26万
  • 项目类别:
    Discovery Grants Program - Individual
FPGA-based fault simulation of transistor level faults at gate level with optimized mapping
基于 FPGA 的门级晶体管级故障仿真,具有优化映射
  • 批准号:
    249639-2002
  • 财政年份:
    2004
  • 资助金额:
    $ 26万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了