Representation and Reasoning about Adaptive Interfaces

自适应接口的表示和推理

基本信息

  • 批准号:
    0307906
  • 负责人:
  • 金额:
    $ 50.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-07-15 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

Previous work on adaptive websites, wearable computing and intelligent user interfaces has shown that these tasks present significant challenges to the fields of machine learning, knowledge representation, and reasoning under uncertainty. This project will address the following core artificial intelligence problems using adaptive interfaces as inspiration and an experimental testbed.1) Given a database of behavioral data for one or more users, what is the best representation for encoding a predictive model of user behavior? What are the best algorithms for learning such a model? This project will generalize Markov models and Dynamic Bayes Nets to create Relational Markov Models (RMMs) and Dynamic Probabilistic Relational Models (DPRMs) respectively. Effective inference and learning algorithms will be developed and evaluated against traditional propositional methods.2) Representing user interfaces is a major challenge. This project will extend the work on task-centered user-interface design with ideas from the planning literature (sensory actions, exogenous events) to develop an expressive task formalism with clear semantics.3) Adapting an interface, which is represented as an augmented plan schema, requires new methods for reasoning about actions. In addition to analyzing causal dependency structures, restructuring operations akin to partial evaluation will be necessary. Fast inference is an essential component of this project. A satisficing plan is not good enough, so the work will use a utility model combining plan length with a cognitive dissonance factor. Methodologically, the project is composed of six coupled activities: (1) Formalize the RMM and DPRM representations; (2) Devise efficient particle-filtering inference methods; (3) Develop learning algorithms based on shrinkage; (4) Formalize a declarative, plan-based interface representation, and evaluate expressiveness on a corpus of adaptation examples; (5) Devise a comprehensive set of adaptation transformations and a utility metric; (6) Implement the methods, incorporate in a user interface platform, and perform extensive experiments. The research will have broad impact, because progress in user interfaces has been dwarfed by the simultaneous enormous increase in the speed of computers. Artificial intelligence techniques are perhaps the most promising avenue for harnessing processing power to increase user productivity. This project will contribute to improved user interfaces not only in desktop software but also in personalized information systems for wearable computers.
先前在自适应网站、可穿戴计算和智能用户界面方面的工作表明,这些任务对机器学习、知识表示和不确定性推理等领域提出了重大挑战。该项目将使用自适应界面作为灵感和实验测试平台来解决以下核心人工智能问题。1)给定一个或多个用户的行为数据数据库,对用户行为的预测模型进行编码的最佳表示是什么?学习这种模型的最佳算法是什么?本计画将利用马尔可夫模型与动态贝氏网路分别建立关系马尔可夫模型与动态机率关系模型。将开发有效的推理和学习算法,并与传统的命题方法进行评估。2)表示用户界面是一个主要的挑战。这个项目将扩展工作的任务为中心的用户界面设计的想法,从规划文献(感官动作,外源事件),开发一个表达任务形式主义与明确的语义。3)适应一个接口,这是表示为一个增强的计划模式,需要新的方法来推理的行动。除了分析因果依赖结构之外,类似于部分评估的重组操作也是必要的。快速推理是这个项目的重要组成部分。一个令人满意的计划是不够好的,所以这项工作将使用一个实用模型相结合的计划长度与认知失调因素。从方法论上讲,该项目由六个耦合活动组成:(1)形式化RMM和DPRM表示;(2)设计有效的粒子过滤推理方法;(3)开发基于收缩的学习算法;(4)形式化声明性,基于计划的界面表示,并评估适应示例语料库的表达能力;(5)设计一套全面的自适应转换和效用度量;(6)实现这些方法,将其纳入用户界面平台,并进行广泛的实验。这项研究将产生广泛的影响,因为与此同时计算机速度的巨大增长相比,用户界面的进步相形见绌。人工智能技术也许是利用处理能力提高用户生产力的最有前途的途径。该项目将有助于改进不仅是桌面软件的用户界面,而且也有助于改进可佩戴计算机的个性化信息系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Weld其他文献

Daniel Weld的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Weld', 18)}}的其他基金

CCRI: Research Infrastructure: NEW: Semantic Scholar Open Data Platform: Enabling Research Into Scientific Search and Discovery
CCRI:研究基础设施:新:语义学者开放数据平台:促进科学搜索和发现研究
  • 批准号:
    2213656
  • 财政年份:
    2022
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Standard Grant
RAPID: Augmented Intelligence for Accelerating Covid-Related Scientific Discovery
RAPID:增强智能加速新冠相关科学发现
  • 批准号:
    2040196
  • 财政年份:
    2020
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Standard Grant
RI: Small: Improving Crowd-Sourced Annotation by Autonomous Intelligent Agents
RI:小型:通过自主智能代理改进众包注释
  • 批准号:
    1420667
  • 财政年份:
    2014
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Standard Grant
RI: Small: Decision-Theoretic Control of Crowd-Sourced Workflows
RI:小型:众包工作流程的决策理论控制
  • 批准号:
    1016713
  • 财政年份:
    2010
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Standard Grant
RI: Small: Integrating Paradigms for Approximate Stochastic Planning
RI:小型:集成近似随机规划的范式
  • 批准号:
    1016465
  • 财政年份:
    2010
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Standard Grant
Supporting Students Attending IUI 2009 Conference
支持学生参加 IUI 2009 会议
  • 批准号:
    0914591
  • 财政年份:
    2009
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Standard Grant
Extending Graphplan to Handle Uncertainty and Sensing Actions
扩展 Graphplan 来处理不确定性和感知动作
  • 批准号:
    9872128
  • 财政年份:
    1998
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Standard Grant
Principled Planning with Simultaneous Actions, Metric Time and Continuous Effects
同步行动、公制时间和连续效应的原则性规划
  • 批准号:
    9303461
  • 财政年份:
    1994
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Continuing Grant
Presidential Young Investigator Award
总统青年研究员奖
  • 批准号:
    8957302
  • 财政年份:
    1989
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Continuing Grant
Managing Complexity in Qualitative Physics
管理定性物理学的复杂性
  • 批准号:
    8902010
  • 财政年份:
    1989
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Standard Grant

相似海外基金

CRII: SHF: Embedding techniques for mechanized reasoning about existing programs
CRII:SHF:现有程序机械化推理的嵌入技术
  • 批准号:
    2348490
  • 财政年份:
    2024
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Standard Grant
SHF: Medium: Reasoning about Multiplicity in the Machine Learning Pipeline
SHF:Medium:机器学习管道中多重性的推理
  • 批准号:
    2402833
  • 财政年份:
    2024
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Continuing Grant
Reasoning about Spatial Relations and Distributions: Supporting STEM Learning in Early Adolescence
空间关系和分布的推理:支持青春期早期的 STEM 学习
  • 批准号:
    2300937
  • 财政年份:
    2023
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Continuing Grant
BRITE Fellow: Autonomous Systems that Accommodate Human Perception and Reasoning about Uncertainty
BRITE 研究员:适应人类对不确定性的感知和推理的自治系统
  • 批准号:
    2227338
  • 财政年份:
    2023
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Standard Grant
Modeling the Conceptual Dynamics of College Students' Reasoning about Natural Selection
大学生自然选择推理的概念动态建模
  • 批准号:
    2300437
  • 财政年份:
    2023
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Standard Grant
SHF: Small: Programming, and Reasoning about, Actors that Share State
SHF:小:共享状态的参与者的编程和推理
  • 批准号:
    2315884
  • 财政年份:
    2023
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Standard Grant
HCC: Medium: Improving data visualization and analysis tools to support reasoning about analysis assumptions
HCC:中:改进数据可视化和分析工具以支持分析假设的推理
  • 批准号:
    2211939
  • 财政年份:
    2022
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Standard Grant
Reasoning about Structured Story Representations
关于结构化故事表示的推理
  • 批准号:
    EP/W003309/1
  • 财政年份:
    2022
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Fellowship
Computational Aspects of Reasoning about Dynamic Systems
动态系统推理的计算方面
  • 批准号:
    RGPIN-2022-05453
  • 财政年份:
    2022
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Discovery Grants Program - Individual
Improving Question Answering Systems by Reasoning About Context
通过推理上下文来改进问答系统
  • 批准号:
    544188-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 50.7万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了