Seeking Optimal Representations, Classifiers, and Generalizations for Image Based Recognition
寻求基于图像的识别的最佳表示、分类器和泛化
基本信息
- 批准号:0307998
- 负责人:
- 金额:$ 34.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-01 至 2007-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Robotics and Human Augmentation ProgramABSTRACTProposal #: 0307998Title: Seeking Optimal Representations, Classifiers, and Generalizations for Image Based RecognitionPI: Liu, XiuwenFlorida State UniversityLinear representations are ubiquitous in all areas of computational sciences. Many applications in image analysis and computer vision involve analysis of large-dimensional data by projecting them linearly to low-dimensional subspaces. In view of their computational efficiency such linear projections have become standard in certain applications. However, for recognizing objects from their images, there is seldom a discussion on finding "optimal" linear representations. Many societal, commercial, and scientific operations, such as homeland security and biometrics, rely heavily on image-based recognition and the recognition performance becomes a vital factor. This project aims to provide efficient algorithms for finding linear and non-linear representations that perform optimally in the context of object recognition. We propose to achieve this goal by: (i) formulating the search for optimal linear representations as that of optimization on Grassmann manifolds, (ii) using the geometry of Grassmannians to develop algorithms for finding optimal linear representations, (iii) analyzing the convergence properties and the theoretical limits of the proposed optimization techniques, and (iv) demonstrating the potential significant performance improvement on problems wherever linear representations are applicable. Since there are numerous applications utilizing dimension reduction using linear projections, including object recognition, image and text retrieval, subspace tracking, and nonlinear filtering, the potential benefits of the proposed research are tremendous. This research will be built on tools for stochastic optimization and statistical inferences on nonlinear manifolds, tools that will prove beneficial in many other applications.This research will also enhance significantly the learning and research environment on computer vision at the Florida State University. Utilization of geometric and statistical approaches to applications in computer vision makes this a multidisciplinary effort to the benefit of all participants, including both graduate and undergraduate students. Outcomes of this research will be incorporated in recently designed courses on Computer Vision and Computational Statistics.
Robotics and Human Augmentation ProgramabSTRACTProposal #:0307998 Title:Seeking Optimal Representations,Classifiers,and Generalizations for Image Based Augmentation PI:Liu,Xiuwen佛罗里达州立大学线性表示在计算科学的所有领域都是普遍存在的。图像分析和计算机视觉中的许多应用涉及通过将高维数据线性投影到低维子空间来分析高维数据。鉴于其计算效率,这种线性投影在某些应用中已经成为标准。然而,对于从图像中识别物体,很少有关于寻找“最佳”线性表示的讨论。许多社会、商业和科学操作,如国土安全和生物识别,严重依赖于基于图像的识别,识别性能成为一个至关重要的因素。这个项目的目的是提供有效的算法,寻找线性和非线性表示,在对象识别的上下文中执行最佳。我们建议通过以下方式实现这一目标:(i)将对最优线性表示的搜索公式化为格拉斯曼流形上的优化,(ii)使用格拉斯曼流形的几何来开发用于寻找最优线性表示的算法,(iii)分析所提出的优化技术的收敛性质和理论极限,以及(iv)在线性表示适用的情况下,证明对问题的潜在显著性能改进。由于有许多应用程序利用降维使用线性投影,包括对象识别,图像和文本检索,子空间跟踪,和非线性滤波,所提出的研究的潜在好处是巨大的。这项研究将建立在非线性流形上的随机优化和统计推断的工具上,这些工具将在许多其他应用中被证明是有益的。这项研究还将显著增强佛罗里达州立大学计算机视觉的学习和研究环境。几何和统计方法在计算机视觉应用中的应用使这成为一项多学科的努力,使所有参与者受益,包括研究生和本科生。这项研究的成果将被纳入最近设计的计算机视觉和计算统计课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiuwen Liu其他文献
Projective shape manifolds and coplanarity of landmark configurations. A nonparametric approach.
投影形状流形和地标配置的共面性。
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
V. Balan;M. Crane;V. Patrangenaru;Xiuwen Liu - 通讯作者:
Xiuwen Liu
Modeling Brain Anatomy with 3D Arrangements of Curves
使用 3D 曲线排列模拟大脑解剖结构
- DOI:
10.1109/iccv.2007.4409164 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
W. Mio;J. Bowers;M. Hurdal;Xiuwen Liu - 通讯作者:
Xiuwen Liu
Kernel Methods for Nonlinear Discriminative Data Analysis
非线性判别数据分析的核方法
- DOI:
10.1007/11585978_38 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Xiuwen Liu;W. Mio - 通讯作者:
W. Mio
3D structure estimation from monocular video clips
单目视频剪辑的 3D 结构估计
- DOI:
10.1109/cvprw.2010.5543795 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Arturo Donate;Xiuwen Liu - 通讯作者:
Xiuwen Liu
Two Discrete Regions of Interleukin-2 (IL2) Receptor β Independently Mediate IL2 Activation of a PD98059/Rapamycin/Wortmannin-insensitive Stat5a/b Serine Kinase*
白细胞介素 2 (IL2) 受体 β 的两个离散区域独立介导 PD98059/雷帕霉素/渥曼青霉素不敏感 Stat5a/b 丝氨酸激酶的 IL2 激活*
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:4.8
- 作者:
R. Kirken;M. G. Malabarba;Jun Xu;L. DaSilva;R. Erwin;Xiuwen Liu;L. Hennighausen;H. Rui;William L. Farrar - 通讯作者:
William L. Farrar
Xiuwen Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiuwen Liu', 18)}}的其他基金
CHS: Small: Collaborative Research: Robust High Order Meshing and Analysis for Design Pipeline Automation
CHS:小型:协作研究:用于设计流程自动化的鲁棒高阶网格划分和分析
- 批准号:
1910486 - 财政年份:2019
- 资助金额:
$ 34.23万 - 项目类别:
Standard Grant
相似海外基金
Optimal utility-based design of oncology clinical development programmes
基于效用的肿瘤学临床开发项目的优化设计
- 批准号:
2734768 - 财政年份:2026
- 资助金额:
$ 34.23万 - 项目类别:
Studentship
Conference: Supplementary funding for the BIRS-CMO workshop Optimal Transport and Dynamics (24s5198)
会议:BIRS-CMO 研讨会最佳运输和动力学的补充资金 (24s5198)
- 批准号:
2401019 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Standard Grant
CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
- 批准号:
2339353 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323415 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Standard Grant
Optimal cell factories for membrane protein production
用于膜蛋白生产的最佳细胞工厂
- 批准号:
BB/Y007603/1 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Research Grant
Hybrid AI and multiscale physical modelling for optimal urban decarbonisation combating climate change
混合人工智能和多尺度物理建模,实现应对气候变化的最佳城市脱碳
- 批准号:
EP/X029093/1 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Fellowship
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
- 批准号:
2339898 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Continuing Grant
Labor Market Polarization, Earnings Inequality and Optimal Tax Progressivity: A Theoretical and Empirical Analysis
劳动力市场两极分化、收入不平等和最优税收累进性:理论与实证分析
- 批准号:
24K04909 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
- 批准号:
2344765 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
- 批准号:
2341950 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Standard Grant