Synthesis and Characterization of Nanoscale Metal Oxide Heterostructures for Chemical Sensing

用于化学传感的纳米级金属氧化物异质结构的合成和表征

基本信息

项目摘要

Objectives of this project are: (1) to expand basic knowledge of growth and property characterization of high-quality oxide semiconductor thin films and p-n heterostructures; (2) to systematically characterize electrical transport properties of the films and p-n heterostructures as a function of chemical doping, film thickness, bias applied, and temperature; (3) to fabricate model systems based on epitaxial single crystal films consisting of field effect transistor (FET) structures and develop a fundamental understanding of the effect of bias applied across the p-n junction on electrical transport properties and selective adsorption properties; and (4) to explore fabrication and characterization of more complex devices such as bipolar transistors with an exposed p-n junction. These devices offer the possibility of amplified electronic response to adsorption at exposed p-n junctions, which may provide a new level of control at the atomic and molecular level.The long-term goal is to develop a fundamental understanding of oxide-based semiconductor heterostructures suitable for the design of nanoengineered sorbents, tunable displays, catalytic materials, and chemical sensors. The understanding gained is expected to provide guidance for improvement of chemical selectivity and sensitivity, and provide a science base for the development of microelectronic devices for selective, tunable chemical sensing. The insights gained will be beneficial not only for advancing chemical sensor technology and for improving health and safety in society, but also impact the basic research and technology development of transparent electrodes for electronic and optical devices. Additionally, through collaboration with Ford, fundamental information that this project will provide may improve emissions control technology for lean-combustion engines. Thus, the intellectual and broader impact of the proposed research may reach well beyond the realm of chemical sensing.%%% This project addresses basic materials research issues in a topical area of materials science with technological relevance, and places emphasis on the integration of research and education. The research program provides excellent opportunities for hands-on experience in the use of sophisticated scientific equipment. Graduate and undergraduate students will be involved in the synthesis, processing, and characterization of electronic materials. The project integrates research with educational outreach which includes (1) creating a mechanism to expose materials research to high school minority students through the existing NASA SHARP Plus program at the University of Michigan, (2) involving undergraduates (particularly women and minority students) in research early in their careers, and (3) bringing the nano-world to the classroom through remote control of electron microscopes via the internet. It is planned to use this facility to demonstrate to a high school class, both live and via a virtual microscopy base, how materials can be manipulated at the atomic scale, and also to use this system for demonstrations to attract undergraduates to materials science and engineering. Students involved in this project will have the opportunity to learn film growth techniques, device fabrication, materials characterization, and to interact with high school students. This interdisciplinary education will provide students with special opportunities and a broad perspective valued in both industrial and academic research.***
本项目的目标是:(1)扩展高质量氧化物半导体薄膜和p-n异质结的生长和性质表征的基本知识;(2)系统地表征薄膜和p-n异质结的电输运性质,作为化学掺杂、薄膜厚度、施加的偏压和温度的函数;(3)制作基于由场效应晶体管(FET)结构组成的外延单晶薄膜的模型系统,并对p-n结上施加的偏压对电输运性质和选择性吸附性质的影响有一个基本的了解;以及(4)探索更复杂的器件的制造和表征,例如具有暴露的p-n结的双极型晶体管。这些器件提供了在暴露的p-n结上放大电子对吸附的响应的可能性,这可能在原子和分子水平上提供新的控制水平。长期目标是发展对氧化物半导体异质结构的基本理解,适合于设计纳米工程吸附剂、可调显示器、催化材料和化学传感器。所取得的认识有望为提高化学选择性和灵敏度提供指导,并为开发用于选择性、可调谐化学传感的微电子器件提供科学基础。这些研究成果不仅有利于化学传感器技术的进步和社会健康安全的提高,而且将对电子和光学器件透明电极的基础研究和技术发展产生重要影响。此外,通过与福特的合作,该项目将提供的基本信息可能会改善稀燃发动机的排放控制技术。因此,拟议研究的智力和更广泛的影响可能远远超出化学传感的领域。%这个项目解决与技术相关的材料科学专题领域的基础材料研究问题,并强调研究和教育的整合。该研究计划提供了在使用尖端科学设备方面的实践经验的绝佳机会。研究生和本科生将参与电子材料的合成、加工和表征。该项目将研究与教育推广相结合,包括(1)创建一种机制,通过密歇根大学现有的NASA Sharp Plus计划向高中生展示材料研究;(2)让本科生(特别是女性和少数族裔学生)在他们职业生涯的早期从事研究;以及(3)通过互联网远程控制电子显微镜,将纳米世界带到课堂上。计划使用这个设施向一个高中班级现场和通过虚拟显微镜基地演示如何在原子尺度上操纵材料,并利用这个系统进行演示,以吸引本科生学习材料科学和工程。参与这个项目的学生将有机会学习薄膜生长技术、器件制造、材料表征,并与高中生互动。这种跨学科的教育将为学生提供特殊的机会和广阔的视角,在工业和学术研究中都有价值。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoqing Pan其他文献

Charge Density Mapping via Scanning Diffraction in Scanning Transmission Electron Microscopy
通过扫描透射电子显微镜中的扫描衍射进行电荷密度映射
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Christopher Addiego;Wenpei Gao;Xiaoqing Pan
  • 通讯作者:
    Xiaoqing Pan
Growth twins in nanocrystalline SnO2 thin films by high‐resolution transmission electron microscopy
通过高分辨率透射电子显微镜观察纳米晶 SnO2 薄膜中的生长孪晶
  • DOI:
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. G. Zheng;Xiaoqing Pan;M. Schweizer;F. Zhou;U. Weimar;W. Göpel;M. Rühle
  • 通讯作者:
    M. Rühle
Robust bayes factors based on TDT-type tests for family trio design
基于 TDT 型家庭三重奏设计测试的鲁棒贝叶斯因子
Dynamic Evolution of Structure and Chemical Bonding in Atomically Dispersed Catalysts via In Situ Electron Microscopy.
通过原位电子显微镜观察原子分散催化剂中结构和化学键的动态演化。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Peter Tieu;S. Dai;W. Zang;Xiaoqing Pan
  • 通讯作者:
    Xiaoqing Pan
Epitaxial growth of ZnTe on GaSb(100) using in situ ZnCl2 surface clean
使用原位 ZnCl2 表面清洁在 GaSb(100) 上外延生长 ZnTe

Xiaoqing Pan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaoqing Pan', 18)}}的其他基金

Exploring the Interplay between Charge, Strain and Polarization in Ferroelectric Nanostructures
探索铁电纳米结构中电荷、应变和极化之间的相互作用
  • 批准号:
    2034738
  • 财政年份:
    2021
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Continuing Grant
UCI MRSEC: Materials Discovery Through Atomic Level Structural Design and Charge Control
UCI MRSEC:通过原子级结构设计和电荷控制进行材料发现
  • 批准号:
    2011967
  • 财政年份:
    2020
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: Directly probing the local coordination, charge state and stability of single atom catalysts – Critical insights from advanced TEM for promoting stability
合作研究:直接探测单原子催化剂的局域配位、电荷状态和稳定性 — 来自先进 TEM 的关键见解,以促进稳定性
  • 批准号:
    2031494
  • 财政年份:
    2020
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Dinuclear Heterogeneous Catalysts (DHCs) as a new Platform for Selective Oxidation of Carbon Monoxide (CO) and Methane (CH4)
合作研究:双核多相催化剂(DHC)作为一氧化碳(CO)和甲烷(CH4)选择性氧化的新平台
  • 批准号:
    1955786
  • 财政年份:
    2020
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Standard Grant
SusChEM: Atomic Structure and Dynamic Behaviors of Extended Defects in Earth-Abundant Solar-Cell Materials
SusChEM:地球丰富的太阳能电池材料中扩展缺陷的原子结构和动态行为
  • 批准号:
    1506535
  • 财政年份:
    2015
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Standard Grant
GOALI: Search for a Practical Perovskite-Based Three-Way Catalyst
目标:寻找实用的钙钛矿基三效催化剂
  • 批准号:
    1159240
  • 财政年份:
    2012
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Standard Grant
Understanding the Atomic Structure and Electronic Properties of Zinc Oxide Interfaces
了解氧化锌界面的原子结构和电子性质
  • 批准号:
    0907191
  • 财政年份:
    2009
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Monochromated, Aberration-Corrected, Ultra High Resolution Transmission Electron Microscope for the Univ. of Michigan's Electron Microbeam Analysis Laboratory
MRI:为大学购买一台单色、像差校正、超高分辨率透射电子显微镜。
  • 批准号:
    0723032
  • 财政年份:
    2007
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Standard Grant
CAREER: Structure-Property Relationships of Nanocrystalline Oxide Films for Gas Sensors
职业:气体传感器用纳米晶氧化膜的结构-性能关系
  • 批准号:
    9875405
  • 财政年份:
    1999
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Standard Grant

相似海外基金

ERI: Molecular-level Characterization of Water-in-Salt Electric Double-Layer Capacitors: Nanoscale Thermal Effects on Differential Capacitance
ERI:盐包水双电层电容器的分子级表征:微分电容的纳米级热效应
  • 批准号:
    2347562
  • 财政年份:
    2024
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Standard Grant
Nanoscale characterization of high-pressure superconductors using diamond quantum sensing
使用金刚石量子传感对高压超导体进行纳米级表征
  • 批准号:
    23H01835
  • 财政年份:
    2023
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Shining Light on Metal Halide Perovskite Stability with Nanoscale Optical Characterization
通过纳米级光学表征揭示金属卤化物钙钛矿的稳定性
  • 批准号:
    EP/X014673/1
  • 财政年份:
    2023
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Research Grant
Characterization of the role of dimensionality in confined spaces for controlled reactivity at the nanoscale
表征尺寸在有限空间中对纳米级受控反应的作用
  • 批准号:
    DDG-2022-00009
  • 财政年份:
    2022
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Discovery Development Grant
Design and in situ Characterization of High-Surface Area Metallic and Bimetallic Nanoscale Catalysts
高比表面积金属和双金属纳米催化剂的设计和原位表征
  • 批准号:
    RGPIN-2020-05418
  • 财政年份:
    2022
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Discovery Grants Program - Individual
Nanoscale Characterization and Aim-Specific Design of Amorphous Materials
非晶材料的纳米级表征和特定目标设计
  • 批准号:
    RGPIN-2021-02544
  • 财政年份:
    2022
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Discovery Grants Program - Individual
Design and in situ Characterization of High-Surface Area Metallic and Bimetallic Nanoscale Catalysts
高比表面积金属和双金属纳米催化剂的设计和原位表征
  • 批准号:
    RGPIN-2020-05418
  • 财政年份:
    2021
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Discovery Grants Program - Individual
Nanoscale Characterization and Aim-Specific Design of Amorphous Materials
非晶材料的纳米级表征和特定目标设计
  • 批准号:
    RGPIN-2021-02544
  • 财政年份:
    2021
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Discovery Grants Program - Individual
Nanoscale Characterization and Aim-Specific Design of Amorphous Materials
非晶材料的纳米级表征和特定目标设计
  • 批准号:
    DGECR-2021-00044
  • 财政年份:
    2021
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Discovery Launch Supplement
Nanoscale characterization of mixed-layer chlorite minerals formation
混合层绿泥石矿物形成的纳米级表征
  • 批准号:
    20K14564
  • 财政年份:
    2020
  • 资助金额:
    $ 39.46万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了