ITR: Optical Processing of Information in Doped Semiconductors

ITR:掺杂半导体中信息的光学处理

基本信息

  • 批准号:
    0312491
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-08-01 至 2007-02-28
  • 项目状态:
    已结题

项目摘要

This award was made on a 'small' category proposal submitted in response to the ITR solicitation, NSF-02-168. It supports theoretical research to explore the storage and processing of information by optical techniques in semiconductors doped with impurities. Diluted impurities in semiconductors represent the solid state analogue of a collection of atoms. Unlike an atomic gas, impurities are (i) frozen spatially, and (ii) are embedded in an optically active host. State-of-the-art Nan-optical techniques can address a single impurity localized in a semiconductor. The optical properties of the host can be used to efficiently control the internal degrees of freedom of the impurities where the information is encoded. A novel aspect of this work lies in the focus on a solid-state system, with potential technological applications, where new quantum optical effects can be investigated. The research seeks to identify reliable schemes for the realization of information technology devices using the electronic and spin degrees of freedom of the impurities. The quantum nature of these systems will be taken into account and exploited. Impurities are a collection of identical objects, and this property can be used to efficiently encode information. A major question concerns the actual viability of these schemes. Investigations of optical and electronic properties of impurities and quantum kinetics simulations will fill the gap between model and real systems. Microscopic calculations will help to identify the most suitable materials. Future information networks may exchange information using light, eventually at the level of single photons. At the same time, the storage of information will require matter-based memories. The research aims to advance the knowledge of a system representing the ideal interface between light and matter, and will give direction for future efficient and secure communication technologies. The processing of information by ultrafast optical control in the proposed system may well be at the base of new revolutionary computing machines. Graduate and undergraduate students will be trained in actively applying physical ideas from quantum and statistical mechanics to information technology. The specific system considered in this project provides an excellent active-learning benchmark for understanding fundamental concepts in physics. With the help of collaborations, students involved in this project will be exposed to materials science, quantum optics, and non-equilibrium statistical mechanics. The research involves developing numerical codes for quantum kinetics equations and microscopic properties of materials. This will improve student's skills in designing numerical codes to solve complex problems. %%%This award was made on a 'small' category proposal submitted in response to the ITR solicitation, NSF-02-168. It supports theoretical research to explore the storage and processing of information by optical techniques in semiconductors doped with impurities. Diluted impurities in semiconductors represent the solid state analogue of a collection of atoms. Unlike an atomic gas, impurities are (i) frozen spatially, and (ii) are embedded in an optically active host. State-of-the-art Nan-optical techniques can address a single impurity localized in a semiconductor. The optical properties of the host can be used to efficiently control the internal degrees of freedom of the impurities where the information is encoded. A novel aspect of this work lies in the focus on a solid-state system, with potential technological applications, where new quantum optical effects can be investigated. The research seeks to identify reliable schemes for the realization of information technology devices using the electronic and spin degrees of freedom of the impurities. The quantum nature of these systems will be taken into account and exploited. Impurities are a collection of identical objects, and this property can be used to efficiently encode information. A major question concerns the actual viability of these schemes. Investigations of optical and electronic properties of impurities and quantum kinetics simulations will fill the gap between model and real systems. Microscopic calculations will help to identify the most suitable materials. Future information networks may exchange information using light, eventually at the level of single photons. At the same time, the storage of information will require matter-based memories. The research aims to advance the knowledge of a system representing the ideal interface between light and matter, and will give direction for future efficient and secure communication technologies. The processing of information by ultrafast optical control in the proposed system may well be at the base of new revolutionary computing machines. Graduate and undergraduate students will be trained in actively applying physical ideas from quantum and statistical mechanics to information technology. The specific system considered in this project provides an excellent active-learning benchmark for understanding fundamental concepts in physics. With the help of collaborations, students involved in this project will be exposed to materials science, quantum optics, and non-equilibrium statistical mechanics. The research involves developing numerical codes for quantum kinetics equations and microscopic properties of materials. This will improve student's skills in designing numerical codes to solve complex problems. ***
该奖项是根据ITR招标(NSF-02-168)提交的“小型”类提案获得的。它支持理论研究,探索在掺杂杂质的半导体中利用光学技术存储和处理信息。半导体中稀释的杂质代表了原子集合的固体模拟物。与原子气体不同,杂质(i)在空间上冻结,(ii)嵌入在光学活性宿主中。最先进的纳米光学技术可以处理半导体中的单一杂质。利用载体的光学特性可以有效地控制编码信息的杂质的内部自由度。这项工作的新颖之处在于关注固态系统,具有潜在的技术应用,可以研究新的量子光学效应。该研究旨在确定利用杂质的电子和自旋自由度来实现信息技术设备的可靠方案。这些系统的量子特性将被考虑和利用。杂质是相同对象的集合,这个属性可以用来有效地编码信息。一个主要问题涉及这些计划的实际可行性。杂质的光学和电子性质的研究和量子动力学模拟将填补模型和实际系统之间的空白。微观计算将有助于确定最合适的材料。未来的信息网络可能使用光交换信息,最终达到单光子的水平。同时,信息的存储将需要基于物质的记忆。该研究旨在推进表征光与物质之间理想界面的系统的知识,并将为未来高效和安全的通信技术指明方向。在提出的系统中,通过超快光控制处理信息很可能成为新的革命性计算机器的基础。研究生和本科生将被训练积极地将量子和统计力学的物理思想应用于信息技术。在这个项目中考虑的具体系统为理解物理学的基本概念提供了一个很好的主动学习基准。在合作的帮助下,参与该项目的学生将接触到材料科学,量子光学和非平衡统计力学。该研究涉及开发量子动力学方程和材料微观特性的数值代码。这将提高学生设计数字代码来解决复杂问题的技能。该合同是根据ITR招标NSF-02-168提交的“小型”类提案授予的。它支持理论研究,探索在掺杂杂质的半导体中利用光学技术存储和处理信息。半导体中稀释的杂质代表了原子集合的固体模拟物。与原子气体不同,杂质(i)在空间上冻结,(ii)嵌入在光学活性宿主中。最先进的纳米光学技术可以处理半导体中的单一杂质。利用载体的光学特性可以有效地控制编码信息的杂质的内部自由度。这项工作的新颖之处在于关注固态系统,具有潜在的技术应用,可以研究新的量子光学效应。该研究旨在确定利用杂质的电子和自旋自由度来实现信息技术设备的可靠方案。这些系统的量子特性将被考虑和利用。杂质是相同对象的集合,这个属性可以用来有效地编码信息。一个主要问题涉及这些计划的实际可行性。杂质的光学和电子性质的研究和量子动力学模拟将填补模型和实际系统之间的空白。微观计算将有助于确定最合适的材料。未来的信息网络可能使用光交换信息,最终达到单光子的水平。同时,信息的存储将需要基于物质的记忆。该研究旨在推进表征光与物质之间理想界面的系统的知识,并将为未来高效和安全的通信技术指明方向。在提出的系统中,通过超快光控制处理信息很可能成为新的革命性计算机器的基础。研究生和本科生将被训练积极地将量子和统计力学的物理思想应用于信息技术。在这个项目中考虑的具体系统为理解物理学的基本概念提供了一个很好的主动学习基准。在合作的帮助下,参与该项目的学生将接触到材料科学,量子光学和非平衡统计力学。该研究涉及开发量子动力学方程和材料微观特性的数值代码。这将提高学生设计数字代码来解决复杂问题的技能。* * *

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carlo Piermarocchi其他文献

All-optical four-state magnetization reversal in (Ga,Mn)As ferromagnetic semiconductors
(Ga,Mn)As铁磁半导体中的全光四态磁化反转
  • DOI:
    10.1063/1.3634031
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    4
  • 作者:
    M. Kapetanakis;P. Lingos;Carlo Piermarocchi;Jigang Wang;I. Perakis
  • 通讯作者:
    I. Perakis
What would Schrödinger's cat see?
薛定谔的猫会看到什么?
  • DOI:
    10.1038/nphys2107
  • 发表时间:
    2011-09-18
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Carlo Piermarocchi
  • 通讯作者:
    Carlo Piermarocchi

Carlo Piermarocchi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carlo Piermarocchi', 18)}}的其他基金

Elements: Software: NSCI: A Quantum Electromagnetics Simulation Toolbox (QuEST) for Active Heterogeneous Media by Design
要素: 软件:NSCI:用于主动异质介质设计的量子电磁仿真工具箱 (QuEST)
  • 批准号:
    1835267
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Computational analysis of nonlinear electromagnetics in disordered photonic systems
无序光子系统中非线性电磁学的计算分析
  • 批准号:
    1408115
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Optical Processing of Information in Doped Semiconductors
掺杂半导体中信息的光学处理
  • 批准号:
    0605801
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Semiconductor on Nitride PhoXonic Integrated Circuit (SONIC) Platform for Chip-Scale RF and Optical Signal Processing
职业:用于芯片级射频和光信号处理的氮化物 PhoXonic 集成电路 (SONIC) 平台上的半导体
  • 批准号:
    2340405
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Optical control of nuclear spin-spin couplings and its application to quantum information processing
核自旋-自旋耦合的光控制及其在量子信息处理中的应用
  • 批准号:
    23H01131
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Solid state optical nonlinearities for quantum information processing
用于量子信息处理的固态光学非线性
  • 批准号:
    2887452
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
High speed optical communication and signal processing
高速光通信和信号处理
  • 批准号:
    RGPIN-2022-04951
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
High-speed processing of low-loss optical waveguides by controlling the distribution of electron excitation using spatial light modulation
通过空间光调制控制电子激发分布来高速处理低损耗光波导
  • 批准号:
    22K20399
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
New optical methods for targeted laser processing of biomaterials
用于生物材料定向激光加工的新光学方法
  • 批准号:
    RGPIN-2020-06539
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Graph based signal processing for optical networks
光网络基于图的信号处理
  • 批准号:
    2737255
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Performance Breakthrough in Distributed Fiber Sensing by Digital Signal Processing of Optical Signal Amplitude and Phase
通过光信号幅度和相位的数字信号处理实现分布式光纤传感的性能突破
  • 批准号:
    560813-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Next Generation Platform for Advanced Optical Processing
下一代先进光学处理平台
  • 批准号:
    RGPIN-2021-03311
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Combinatorial solution processing of optical phase change materials
合作研究:光学相变材料的组合溶液加工
  • 批准号:
    2225968
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了