N-body Aspects in the Kinetic Theory of Plasmas and Gravitating Systems
等离子体和引力系统动力学理论中的 N 体方面
基本信息
- 批准号:0318532
- 负责人:
- 金额:$ 7.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-12-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: 0204939PI: Michel JabbourInstitution: University of KentuckyTitle: Some studies on phase segregation and the influence of microstructure on multispecies thin film growthABSTRACTThe phenomenon of phase segregation is commonly observed in many multispecies thin films, where secondary-phase islands may nucleate and grow on the surface of a film and thus influence the properties of the film. The influence may be detrimental or beneficial. For example, barium-rich YBCO films may loose their superconducting properties but, on the other hand, islands on YBCO films may act as pinning centers for the magnetic field. Further applications of phase segregation and the formation of secondary-phase islands are found in quantum dots and wires in semiconductors. Understanding the mechanisms underlying phase segregation and the stability of secondary-phase islands is therefore crucial for the design and controllability of thin films. One objective of the present research project is to provide, in the context of deposition of multispecies thin films, a mathematically rigorous and thermodynamically consistent derivation of the equations governing the evolution, away from equilibrium, of interfacial triple junctions along which the film, vapor, and secondary phases intersect. Such a continuum model lends itself to a stability analysis and may thus shed light on the conditions under which surface precipitates can be expected to form and grow. When the film surface is a vicinal one, growth can occur via step flow---that is, lateral motion of atomic-high steps which separate several-unit-cell-wide terraces. In multicomponent films, the deposition of gas-phase atoms can be competitive---that is, adsorption of distinct species on individual terraces can occur on the same site. The second objective of this proposal is to develop a micromechanical model for multicomponent films that accounts for the combined effects of the terrace-and-ledge microstructure, adatom diffusion, and competitive adsorption-desorption kinetics. A third objective of this project is to link the nanoscale to the microscopic scale by incorporating averaged information obtained by homogenization of the micromechanical model of film growth discussed above into macroscopic models in the form of constitutive relations.Thin films constitute a fundamental component of numerous novel technologies. Examples include semiconductors in micro- and opto-electronic device applications, diamonds in industrial cutting tools, various anticorrosion and antiwear coats, shape-memory alloys as actuators in microelectromechanical systems (MEMS), and superconductors in wireless communication devices. In most industrial applications, multispecies films are more widely used than their single-component counterparts. The properties of these films and their performance under very stringent conditions depend on their chemical composition and the morphological details of the film surface. To better control the chemistry and microstructure of thin films during the growth process, a mathematically rigorous understanding of the fundamental physical and chemical mechanisms at play is necessary, especially as the atom-by-atom fabrication of materials is no longer a remote dream. Applied mathematicians can (and already do) make a significant contribution to such a global effort by developing physically sound predictive models which can be analyzed rigorously and implemented for numerical simulations. The concepts of modern continuum physics, when combined with the tools of modern mathematics (for example, homogenization and the theory of nonlinear partial differential equations), constitute a potent methodology with which to address many of the challenging issues related to the growth of multicomponent thin films.
建议:0204939PI:Michel Jabber研究所:肯塔基大学标题:关于相分离和微结构对多物种薄膜生长的影响的一些研究摘要在许多多物种薄膜中普遍观察到相分离现象,其中第二相岛可能在薄膜表面形核和生长,从而影响薄膜的性能。这种影响可能是有害的,也可能是有益的。例如,富含Ba2+的YBCO薄膜可能会失去其超导性能,但另一方面,YBCO薄膜上的岛屿可能会充当磁场的钉扎中心。相分离和二次相岛的形成在半导体中的量子点和线中得到了进一步的应用。因此,了解相分离和第二相岛的稳定性的机制对于薄膜的设计和可控性是至关重要的。本研究项目的一个目标是,在多组分薄膜沉积的背景下,提供控制膜、蒸汽和第二相相交的界面三重结在平衡之外的演化的数学上严格和热力学上一致的方程的推导。这种连续体模型有助于稳定性分析,因此可能有助于阐明地表沉淀物的形成和生长条件。当薄膜表面是邻近表面时,生长可以通过阶跃流发生-也就是原子高度台阶的横向运动,该台阶分隔了几个单位单元宽的梯级。在多组分薄膜中,气相原子的沉积可以是竞争性的-也就是说,不同物种在各个梯田上的吸附可以发生在同一地点。这一建议的第二个目标是建立一个多组分薄膜的微观力学模型,该模型考虑了阶梯和台阶微结构、吸附原子扩散和竞争吸附-脱附动力学的综合影响。该项目的第三个目标是通过将上述薄膜生长的微观力学模型均质化获得的平均信息以本构关系的形式结合到宏观模型中,将纳米尺度与微观尺度联系起来。薄膜是许多新技术的基本组成部分。例如用于微型和光电子设备的半导体、用于工业切割工具的钻石、各种防腐和耐磨涂层、用作微电子机械系统(MEMS)执行器的形状记忆合金,以及用于无线通信设备的超导体。在大多数工业应用中,多组分薄膜比单组分薄膜应用更广泛。这些薄膜的性能和它们在非常严格的条件下的性能取决于它们的化学成分和薄膜表面的形态细节。为了在生长过程中更好地控制薄膜的化学和微结构,有必要从数学上严格理解起作用的基本物理和化学机制,特别是在逐个原子制造材料不再是一个遥远的梦想的情况下。应用数学家可以(而且已经这样做了)通过开发物理上合理的预测模型来为这种全球努力做出重大贡献,这些模型可以被严格分析并用于数值模拟。现代连续介质物理的概念,当与现代数学工具(例如,齐次化和非线性偏微分方程组理论)相结合时,构成了一种有效的方法,用来解决与多组分薄膜生长有关的许多具有挑战性的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlo Lancellotti其他文献
Carlo Lancellotti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlo Lancellotti', 18)}}的其他基金
Strengthening the Mathematics and Science Teacher Pathways in the Post-Pandemic Environment
加强大流行后环境中的数学和科学教师的途径
- 批准号:
2344918 - 财政年份:2024
- 资助金额:
$ 7.25万 - 项目类别:
Continuing Grant
Mathematical foundations of plasma kinetic theory
等离子体动力学理论的数学基础
- 批准号:
1107307 - 财政年份:2011
- 资助金额:
$ 7.25万 - 项目类别:
Standard Grant
Mathematical methods in the kinetic theory of plasmas and gravitating systems
等离子体和引力系统动力学理论中的数学方法
- 批准号:
0604946 - 财政年份:2006
- 资助金额:
$ 7.25万 - 项目类别:
Standard Grant
N-body Aspects in the Kinetic Theory of Plasmas and Gravitating Systems
等离子体和引力系统动力学理论中的 N 体方面
- 批准号:
0207339 - 财政年份:2002
- 资助金额:
$ 7.25万 - 项目类别:
Standard Grant
相似国自然基金
基于序列固定多肽的pH超敏荧光探针的
设计及其在肿瘤手术导航方面的应用
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
高性能n型柔性有机电化学晶体管的制备
及在脑电监测方面的应用研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
企业在社会责任方面“言行”一致吗?掩饰策略、行
为后果和制度诱因
- 批准号:72472064
- 批准年份:2024
- 资助金额:万元
- 项目类别:面上项目
非凸区间值优化问题的最优性、对偶及相关方面研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
冠心宁在 TOAST 分型为大动脉粥样硬化(LAA)的脑梗死预防方面的应用研究
- 批准号:2024QC-A1009
- 批准年份:2024
- 资助金额:1.0 万元
- 项目类别:省市级项目
企业在社会责任方面“言行”一致吗?掩饰策略、行为后果和制度诱因
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:面上项目
基于动态化学的聚合物组装体及其在细菌生
物被膜感染疾病治疗方面的应用
- 批准号:R24H180006
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
新型吉帕级超高强马氏体装甲钢闪速热处理工艺研究与强韧化机理
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
膜融合必需基因缺失的细胞在细胞膜融合方面的适应性进化机制
- 批准号:32300496
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型微流控纳米电穿孔平台在工程化外泌体制备和原位分析方面的研究
- 批准号:22374048
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
$ 7.25万 - 项目类别:
Research Grant
Combinational, Structural and algorithmic aspects of temporal graphs
时间图的组合、结构和算法方面
- 批准号:
2903280 - 财政年份:2024
- 资助金额:
$ 7.25万 - 项目类别:
Studentship
CAREER: Geometric Aspects of Isoperimetric and Sobolev-type Inequalities
职业:等周和索博列夫型不等式的几何方面
- 批准号:
2340195 - 财政年份:2024
- 资助金额:
$ 7.25万 - 项目类别:
Continuing Grant
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
- 批准号:
2882187 - 财政年份:2023
- 资助金额:
$ 7.25万 - 项目类别:
Studentship
Aspects and Functions of Legal Principles in Civil Law Interpretation
民法解释中法律原则的方面和作用
- 批准号:
23K01192 - 财政年份:2023
- 资助金额:
$ 7.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Various Aspects of the Mechanistic Views of Nature in the Late 19th Century
19世纪末自然机械论的各个方面
- 批准号:
23K00265 - 财政年份:2023
- 资助金额:
$ 7.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Human, Engineering, and Scientific Aspects of Disease Transmission in Natural and Built Environments
会议:自然和建筑环境中疾病传播的人类、工程和科学方面
- 批准号:
2332366 - 财政年份:2023
- 资助金额:
$ 7.25万 - 项目类别:
Standard Grant
AF: Small: Theoretical Aspects of Repetition-Aware Text Compression and Indexing
AF:小:重复感知文本压缩和索引的理论方面
- 批准号:
2315822 - 财政年份:2023
- 资助金额:
$ 7.25万 - 项目类别:
Standard Grant