Electrohydrodynamics of Atomic Force Microscopy Imaging of Biological Membranes
生物膜原子力显微镜成像的电流体动力学
基本信息
- 批准号:0323564
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-01-01 至 2006-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractCTS-0323564A. Fedorov, Georgia TechOriginal research is proposed in several areas of fluid mechanics and mass/ion transport which are significant to data interpretation and instrument optimization of the atomic force microscopy (AFM) with application to in-situ, high spatial and temporal resolution imaging of biological cells. The series of increasingly complex models of the electrohydrodynamics of AFM tapping mode operation are proposed, which are based on the continuous transport theory and applicable for the AFM tip radius greater than 10nm and the sub-millisecond temporal resolution. Specifically, based on the first-principles, (1) the effect of the fluid mechanics of the inner and outer cellular fluids and the cell membrane deformation during an AFM tapping mode probing process will be quantified, (2) the effect of the charge double layer at the cell membrane surface on the AFM tip-biomembrane interactions will be assessed in a physiological system under conditions of local electrochemical equilibrium, (3) fundamentals of the ion transport across the flexible biological membrane will be investigated to establish the effect of electrochemical non-equilibrium on electrohydrodynamics of AFM tip-biomembrane interactions, and (4) the boundary integral solution methodology will be extended to simulation of a complex multiphysics problem such as AFM imaging of flexible biological specimens.The scientific impact of the proposed research is beyond the realm of fluid dynamics and is expected in every field where atomic force microscopy is being used to investigate properties of soft samples in liquid environment. A success in the proposed theoretical analysis of electrohydrodynamics of AFM has a greatest potential to lead to almost immediate improvements in the fields of cellular biology, biomedical imaging, and scanning nanoprobe development. Specifically, this research will result in (1) quantitativeinterpretation of the AFM imaging data in order to predict the cell morphology, membrane structure, surface charge, mechanical properties and molecular level interactions, (2) optimization of the AFM instrument operational characteristics (e.g., shape and size of the AFM tip and optimal tapping mode frequency and amplitude) that result in optimal functionality (i.e., highest spatial and temporalresolution of imaging), and (3) development of new imaging modalities through "virtual" computer experiments for next generation of the integrated AFM-based multifunctional scanning probes.An outreach program focused on demonstration and discussion of physical principles underlying the atomic force microscopy is also proposed in order to facilitate dissemination of research results and to promote understanding of latest advances in science and technology by pre-college students and general public. Owing to simplicity of physical principles underlying operation of the atomic force microscopy (i.e., an atomic-scale stylus working based on mass-and-spring physics), we will develop a set of internet-basedlectures describing fluid mechanics aspects of AFM tapping-mode imaging of soft membrane-bound samples for presentation to a wide audience, including students at Georgia Tech and high schools in the Atlanta area which are operated under the Georgia Tech academic mentorship. The lecture material will also be made available to general public by being videotaped and placed on the website of the Georgia Tech's Center for Enhancement of Teaching and Learning (CETL). Further, the computer visualization will be accompanied by a simple, "macroscale" experimental demonstration of the fluid motion induced in the liquid by tapping mode action of the cantilever when "a large AFM" tip probes the flexible, membrane-like surface of the balloon filled with a heavier liquid (e.g., water) and placed inside of a container filled with a transparent, lighter fluid (e.g., silicon oil) and seeded with tracer particles for flow visualization. Such an experimental demonstration would provide an opportunity to convey in a simple manner some of the mostfundamental concepts of fluid mechanics even beyond AFM applications such as, for example, the scaling of the flow phenomena and design of engineering experiments.
abstractcts - 0323564 a。提出了流体力学和质量/离子输运的几个领域的技术原创研究,这对原子力显微镜(AFM)的数据解释和仪器优化具有重要意义,并应用于生物细胞的原位,高空间和时间分辨率成像。基于连续输运理论,提出了一系列日益复杂的AFM攻丝模式电流体动力学模型,这些模型适用于AFM针尖半径大于10nm和亚毫秒时间分辨率。具体而言,基于第一性原理,(1)将量化AFM攻丝模式探测过程中细胞内外流体的流体力学和细胞膜变形的影响;(2)将在局部电化学平衡条件下的生理系统中评估细胞膜表面的双电荷层对AFM尖端-生物膜相互作用的影响。(3)研究离子在柔性生物膜上传输的基本原理,以确定电化学非平衡对AFM尖端-生物膜相互作用的电流体动力学的影响;(4)将边界积分解方法扩展到复杂的多物理场问题的模拟,如柔性生物标本的AFM成像。所提出的研究的科学影响超出了流体动力学领域,并且在原子力显微镜被用于研究液体环境中软样品性质的每个领域都是预期的。AFM的电流体动力学理论分析的成功,有可能导致细胞生物学、生物医学成像和扫描纳米探针开发领域几乎立即得到改善。具体来说,这项研究将导致(1)AFM成像数据的定量解释,以预测细胞形态、膜结构、表面电荷、机械性能和分子水平的相互作用,(2)优化AFM仪器的操作特性(例如,AFM尖端的形状和大小以及最佳的攻丝模式频率和振幅),从而实现最佳的功能(即,最高的空间和时间分辨率成像)。(3)通过“虚拟”计算机实验,为下一代集成afm多功能扫描探针开发新的成像模式。为了促进研究成果的传播,促进大学预科学生和公众对科学技术最新进展的了解,还提出了一项外展计划,重点展示和讨论原子力显微镜的物理原理。由于原子力显微镜(即基于质量和弹簧物理的原子尺度笔)操作的物理原理简单,我们将开发一套基于互联网的讲座,描述AFM软膜结合样品的轻敲模式成像的流体力学方面,以供广泛的听众,包括佐治亚理工学院的学生和亚特兰大地区的高中,这些学生在佐治亚理工学院的学术指导下操作。讲座材料也将通过录像向公众开放,并放在乔治亚理工学院教学促进中心(CETL)的网站上。此外,计算机可视化将伴随着一个简单的,“宏观尺度”的实验演示,通过悬臂的轻叩模式作用来诱导液体中的流体运动,当“一个大AFM”尖端探测充满较重液体(例如水)的气球的柔性膜状表面,并将其放入充满透明,较轻液体(例如硅油)的容器中,并播种示踪颗粒用于流动可视化。这样的实验演示将提供一个机会,以一种简单的方式传达流体力学的一些最基本的概念,甚至超越了AFM的应用,例如,流动现象的缩放和工程实验的设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrei Fedorov其他文献
Direct Measurements of Energetic Neutral Hydrogen in the Interplanetary Medium
行星际介质中高能中性氢的直接测量
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
A. Galli;P. Wurz;S. Barabash;A. Grigoriev;R. Lundin;Y. Futaana;H. Gunell;M. Holmström;E. Roelof;C. Curtis;K. Hsieh;Andrei Fedorov;D. Winningham;R. Frahm;R. Cerulli;P. Bochsler;N. Krupp;J. Woch;M. Fränz - 通讯作者:
M. Fränz
MAVEN and MEX Multi‐instrument Study of the Dayside of the Martian Induced Magnetospheric Structure Revealed by Pressure Analyses
通过压力分析揭示的火星感应磁层结构的日面 MAVEN 和 MEX 多仪器研究
- DOI:
10.1029/2019ja026954 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
M. Holmberg;N. André;P. Garnier;R. Modolo;Laila Andersson;J. Halekas;C. Mazelle;M. Steckiewicz;V. Génot;Andrei Fedorov;S. Barabash;D. Mitchell - 通讯作者:
D. Mitchell
Oxygen Ion Energization at Mars: Comparison of MAVEN and Mars Express Observations to Global Hybrid Simulation
火星上的氧离子能量:MAVEN 和火星快车观测与全球混合模拟的比较
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
R. Jarvinen;David A. Brain;R. Modolo;Andrei Fedorov;M. Holmström - 通讯作者:
M. Holmström
Detection efficiency of microchannel plates to penetrating radiation in space
微通道板对空间穿透辐射的探测效率
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:1.4
- 作者:
Nicolas André;Andrei Fedorov;O. Chassela;A. Grigoriev;E. L. Comte;J. Rouzaud;M. Bassas - 通讯作者:
M. Bassas
Andrei Fedorov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrei Fedorov', 18)}}的其他基金
Liquid Fuel Reformation in Direct Droplet Impingement Microreactors
直接液滴撞击微反应器中的液体燃料重整
- 批准号:
0928716 - 财政年份:2009
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
SGER: Scanning Mass Spectrometry (SMS) Probe for Biochemical Imaging on the Nanoscale
SGER:用于纳米级生化成像的扫描质谱 (SMS) 探针
- 批准号:
0757846 - 财政年份:2008
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似海外基金
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X007669/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
- 批准号:
24K18449 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
High-Speed Atomic Force Microscope
高速原子力显微镜
- 批准号:
532150447 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Major Research Instrumentation
Unravelling dengue virus structural dynamics and conformational changes using high-speed atomic force microscopy
使用高速原子力显微镜揭示登革热病毒结构动力学和构象变化
- 批准号:
24K18450 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Atomic scale reactivity of small islands of a bimetallic alloy on ceria to small molecules investigated by ultrahigh resolution atomic force microscopy
通过超高分辨率原子力显微镜研究二氧化铈上双金属合金小岛对小分子的原子尺度反应性
- 批准号:
24K01350 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
State-of-the-art atomic force microscopy facilities for South Australia
南澳大利亚最先进的原子力显微镜设施
- 批准号:
LE240100129 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
- 批准号:
BB/X00760X/1 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Research Grant
Bruker Atomic Force Microscope NanoWizard® 5
布鲁克原子力显微镜 NanoWizard® 5
- 批准号:
10632932 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
A New Nano Tip Fabrication Technique for Atomic Force Microscopy
原子力显微镜的新型纳米尖端制造技术
- 批准号:
DP230100637 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Discovery Projects
high resolution structural characterization of extraterrestrial polyaromatic hydrocarbon by atomic force microscope
原子力显微镜高分辨率地外多芳烃结构表征
- 批准号:
23K13665 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists