Structural Optimization and Stability
结构优化与稳定
基本信息
- 批准号:0324628
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-10-01 至 2007-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractIn many mechanical and aerodynamic systems structural strength, stability and lightness are of primaryimportance. The stability of a structure with a specified support and external loading can be characterized byan eigenvalue problem whose solution determines the non-trivial equilibrium configurations of the system.The maximum external load that can be imposed on the structure is determined by the least eigenvalue of thesystem. The problem of designing an optimal structure that can support the largest load is more involved. It requiresthe determination of structural parameters, e.g., the variable cross-sectional area of the structure, whichmaximize the least eigenvalue of the system. An important example is due to Lagrange, who attempted todetermine the shape of the strongest column with a specific length and mass. This apparently simple problemremained unsolved for more than one hundred and fifty years. Its analytical solution is still surrounded bycontroversy. The main thrust of this research is that the standard optimization procedure is by no means the best way toaddress the structural optimization problem involved. Depending on the failure criterion, there is a certainrelation between the structural mode of failure and the physical parameters of the optimal structure. In theLagrange problem the maximum bending stress in the ideal column is constant along its length. This conditionimplies that the square of the fundamental buckling mode is proportional to the cube of the cross-sectional areafor the optimal column. This relation was vital in determining the exact analytical solution to the problem. Italso plays a major role in the new methodology proposed here, which consists of two stages:(a) Determining the relation between the mode-shape of failure and the physical parameters of the optimalstructure. This relation leads to an eigenvalue problem where elements of the stiffness matrix are knownfunctions of an eigenvector of the system, and(b) Solving the inverse eigenvalue problem of determining the unknown parameters in the stiffness matrixsubject to the eigenvector constraint.The project has practical engineering applications in new and emerging technologies related to fabricationof microstructures and their integration in new generation of mechanical components. Another importantapplication of the proposed research is in design of safe, reliable, and lightweight aerospace structuresThe proposed activity will also contribute to the curriculum development of Machine Design Lab andStress Analysis. The students will take part in a design competition involving optimal design of structuresThe project will support disadvantaged minority students by (a) directly involving them in the research,and (b) stimulating their interest in advancing themselves to pursue graduate study
在许多机械和空气动力系统中,结构的强度、稳定性和轻便是最重要的。具有给定支承和外载荷的结构的稳定性可以用一个特征值问题来描述,该问题的解决定了系统的非平凡平衡构形,结构所能承受的最大外载荷由系统的最小特征值决定。设计一个能承受最大载荷的最优结构的问题涉及较多。它需要确定结构参数,例如,使系统最小特征值最大化的变截面结构。一个重要的例子是由于拉格朗日,谁试图确定的形状最强的柱与特定的长度和质量。这个看似简单的问题一百五十多年来一直没有得到解决。它的解析解至今仍有争议。本研究的主旨是,标准的优化程序绝不是解决结构优化问题的最佳方法。根据失效准则,结构的失效模式与最优结构的物理参数之间存在一定的关系。在拉格朗日问题中,理想柱的最大弯曲应力沿其长度沿着是常数.这个条件意味着基本屈曲模态的平方与最优柱横截面积的立方成正比。这个关系对于确定问题的精确解析解至关重要。它也起着重要的作用,在这里提出的新方法,它包括两个阶段:(a)确定之间的关系的模式形状的破坏和最佳结构的物理参数。这种关系导致了一个特征值问题,其中刚度矩阵的元素是系统的特征向量的已知函数,以及(B)解决确定刚度矩阵中的未知参数的逆特征值问题,受到特征向量的约束。该项目在与微结构的制造及其在新一代机械部件中的集成有关的新兴技术中具有实际的工程应用。本研究的另一个重要应用是在安全、可靠、轻量化的航空航天结构设计中,本研究也将有助于机械设计实验室和应力分析的课程开发。学生们将参加一个设计竞赛,涉及结构的最佳设计。该项目将通过以下方式支持弱势少数民族学生:(a)直接让他们参与研究,(B)激发他们对深造的兴趣
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yitshak Ram其他文献
Yitshak Ram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yitshak Ram', 18)}}的其他基金
Model Construction and Physical Parameter Identification from Spectral Data
光谱数据的模型构建和物理参数识别
- 批准号:
9978786 - 财政年份:2000
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational and experimental assessment of pelvic stability and optimization of technology to guide reconstruction
骨盆稳定性的计算和实验评估以及指导重建的技术优化
- 批准号:
RGPIN-2022-04993 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual
Development and Implementation of Stability and Control Constraints for Unconventional Solar-Powered Hybrid Airship Shape Optimization
非常规太阳能混合飞艇形状优化的稳定性和控制约束的开发和实施
- 批准号:
575875-2022 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Collaborative Research: Power Systems Dynamics from Real-Time Data: Modeling, Inference, and Stability-Aware Optimization
协作研究:实时数据的电力系统动力学:建模、推理和稳定性感知优化
- 批准号:
2150571 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Power Systems Dynamics from Real-Time Data: Modeling, Inference, and Stability-Aware Optimization
协作研究:实时数据的电力系统动力学:建模、推理和稳定性感知优化
- 批准号:
2150596 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Optimization of filtered tailings deposition and reclamation for improved physical and chemical stability
优化过滤尾矿沉积和回收以提高物理和化学稳定性
- 批准号:
RGPIN-2022-03223 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual
Establishing a Design Framework for Multi-functional composites by Leveraging Kirigami Cutting, Multi-stability, and Multi-level Optimization
利用 Kirigami 切割、多稳定性和多级优化建立多功能复合材料的设计框架
- 批准号:
2240326 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Investigating Unconventional Aircraft Configurations to Improve Aerodynamic Efficiency by Performing a Multidisciplinary Design Optimization that Involves High-Fidelity Aerodynamics, Stability and Con
研究非常规飞机配置,通过执行涉及高保真空气动力学、稳定性和控制的多学科设计优化来提高空气动力学效率
- 批准号:
544240-2019 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Improvement on energetic efficiency and stability of AUV group based on formation configration optimization
基于编队布局优化的AUV群能量效率和稳定性提升
- 批准号:
20K14978 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigating Unconventional Aircraft Configurations to Improve Aerodynamic Efficiency by Performing a Multidisciplinary Design Optimization that Involves High-Fidelity Aerodynamics, Stability and Con
研究非常规飞机配置,通过执行涉及高保真空气动力学、稳定性和控制的多学科设计优化来提高空气动力学效率
- 批准号:
544240-2019 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Investigating Unconventional Aircraft Configurations to Improve Aerodynamic Efficiency by Performing a Multidisciplinary Design Optimization that Involves High-Fidelity Aerodynamics, Stability and Con
研究非常规飞机配置,通过执行涉及高保真空气动力学、稳定性和控制的多学科设计优化来提高空气动力学效率
- 批准号:
544240-2019 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years