ITR: Collaborative Research: Representation and Learning in Computational Game Theory
ITR:协作研究:计算博弈论中的表示和学习
基本信息
- 批准号:0325500
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-15 至 2009-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational Game Theory is a rapidly emerging discipline at the intersection of computer science, economics, and related fields. It is becoming a fundamental tool for understanding and designing complex multiagent environments such as the Internet, systems of autonomous agents, and electronic economies. The objective of this program is the development of powerful new representations for complex game-theoretic and economic reasoning problems, and strategic learning algorithms for adjusting their parameters.Special emphasis is being given to models permitting the specification of natural network structure in the interactions within a large population of players, and models generalizing the spirit of financial markets, in which interactions take place via global intermediate quantities. Powerful recent machine learning methods such as boosting and exponential updates are also being applied to the more subtle and complex setting of learning in games.The expected results of the program are a rich set of new modeling methods for game-theoretic applications, and computationally efficient algorithms for reasoning with them, including the computation of Nash, correlated, and other equilibria, as well as efficient learning methods with known convergence properties. Special emphasis will be given to formal analysis, and the resulting methods will provide a new toolbox for researchers in economics, social science, evolutionary biology, and other fields in which game-theoretic approaches are common. The findings of the program will be widely disseminated through international conferences and journals, as well as more specialized workshops deliberately bringing together researchers from the different relevant disciplines.
计算博弈论是计算机科学、经济学和相关领域交叉的一门新兴学科。它正在成为理解和设计复杂的多主体环境,如互联网,自治代理系统和电子经济的基本工具。该计划的目标是为复杂的博弈论和经济推理问题开发强大的新表示法,以及调整其参数的战略学习算法。特别强调允许在大量参与者之间的相互作用中指定自然网络结构的模型,以及概括金融市场精神的模型,其中相互作用通过全局中间量发生。最近强大的机器学习方法,如boosting和指数更新,也被应用于更微妙和更复杂的游戏学习环境。该计划的预期结果是为游戏理论应用提供一套丰富的新建模方法,以及用于推理的计算高效算法,包括纳什均衡,相关均衡和其他均衡的计算,以及具有已知收敛特性的有效学习方法。特别强调将给予正式的分析,并由此产生的方法将提供一个新的工具箱,为研究人员在经济学,社会科学,进化生物学,以及其他领域的博弈论的方法是常见的。该计划的研究结果将通过国际会议和期刊以及有意将不同相关学科的研究人员聚集在一起的更专业的研讨会广泛传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Schapire其他文献
Robert Schapire的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Schapire', 18)}}的其他基金
RI: Small: Boosting, Optimality and Game Theory
RI:小:Boosting、最优性和博弈论
- 批准号:
1016029 - 财政年份:2010
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
ITR: Collaborative Research: New Directions in Predictive Learning: Rigorous Learning Machines
ITR:协作研究:预测学习的新方向:严格的学习机器
- 批准号:
0325463 - 财政年份:2003
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
相似海外基金
ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
- 批准号:
1404694 - 财政年份:2013
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
ITR-SCOTUS: A Resource for Collaborative Research in Speech Technology, Linguistics, Decision Processes, and the Law
ITR-SCOTUS:语音技术、语言学、决策过程和法律合作研究的资源
- 批准号:
1139735 - 财政年份:2011
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
0963973 - 财政年份:2009
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
1018072 - 财政年份:2009
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
ITR Collaborative Research: A Reusable, Extensible, Optimizing Back End
ITR 协作研究:可重用、可扩展、优化的后端
- 批准号:
0838899 - 财政年份:2008
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
- 批准号:
0833849 - 财政年份:2008
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
0808419 - 财政年份:2007
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
ITR: Collaborative Research - ASE - (sim+dmc): Image-based Biophysical Modeling: Scalable Registration and Inversion Algorithms and Distributed Computing
ITR:协作研究 - ASE - (sim dmc):基于图像的生物物理建模:可扩展配准和反演算法以及分布式计算
- 批准号:
0849301 - 财政年份:2007
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
ITR: Collaborative Research: Modeling and Display of Haptic Information for Enhanced Performance of Computer-Integrated Surgery
ITR:协作研究:触觉信息建模和显示,以提高计算机集成手术的性能
- 批准号:
0711040 - 财政年份:2007
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Collaborative Research: ITR-(ASE)-(dmc): Overcoming Fractionation Errors in Cancer Treatement Planning
合作研究:ITR-(ASE)-(dmc):克服癌症治疗计划中的分割错误
- 批准号:
0749671 - 财政年份:2006
- 资助金额:
$ 42万 - 项目类别:
Standard Grant