Cyclic Fatigue Mechanisms in New Lead-Free Piezoelectric Ceramics

新型无铅压电陶瓷的循环疲劳机制

基本信息

  • 批准号:
    DP0988182
  • 负责人:
  • 金额:
    $ 28.04万
  • 依托单位:
  • 依托单位国家:
    澳大利亚
  • 项目类别:
    Discovery Projects
  • 财政年份:
    2009
  • 资助国家:
    澳大利亚
  • 起止时间:
    2009-06-01 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

Piezoceramics are an important component in many items in modern day Australian life. However, they present a growing environmental concern, particularly for disposal, because they contain lead oxide and must often be disposed of prematurely due to component failure. Furthermore, many key Australian industries manufacture and use piezoceramics in fields ranging from mineral exploration, to imaging to biomedical devices. This project will enable the development of lead-free alternatives to current materials and more reliable materials which will reduce the need for waste disposal.
压电陶瓷是现代澳大利亚生活中许多项目的重要组成部分。然而,它们提出了越来越多的环境问题,特别是对于处置,因为它们含有氧化铅,并且由于组件故障而必须经常过早地处置。此外,澳大利亚的许多关键行业制造和使用压电陶瓷,从矿产勘探到成像到生物医学设备。该项目将开发无铅替代品,以取代目前的材料和更可靠的材料,从而减少废物处理的需要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prof Mark Hoffman其他文献

Prof Mark Hoffman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prof Mark Hoffman', 18)}}的其他基金

Fatigue in Lead-free Piezoceramics
无铅压电陶瓷的疲劳
  • 批准号:
    DP150104649
  • 财政年份:
    2015
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Discovery Projects
A novel solution to reducing cavitation wear in hydraulic systems
减少液压系统气蚀磨损的新颖解决方案
  • 批准号:
    LP120200767
  • 财政年份:
    2013
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Linkage Projects
Surface Mechanical Property Analysis Facility
表面力学性能分析设备
  • 批准号:
    LE0561186
  • 财政年份:
    2005
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Development of Cyclic Fatigue Degradation Criteria for Piezoelectric Ceramic Components
压电陶瓷元件循环疲劳退化标准的制定
  • 批准号:
    DP0558596
  • 财政年份:
    2005
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Discovery Projects
Development of Deformation-Mechanism Based Parameters for Improved Design of Hard Coatings
开发基于变形机制的参数以改进硬质涂层的设计
  • 批准号:
    DP0451423
  • 财政年份:
    2004
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Discovery Projects
Development of PVC-Based Polymer Nanocomposites
PVC基聚合物纳米复合材料的开发
  • 批准号:
    LP0455800
  • 财政年份:
    2004
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Linkage Projects
Crack Propagation within Graded Interfaces
分级界面内的裂纹扩展
  • 批准号:
    DP0211530
  • 财政年份:
    2002
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Discovery Projects

相似海外基金

CAREER: Bridging Research & Education in Delineating Fatigue Performance & Damage Mechanisms in Metal Fused Filament Fabricated Inconel 718
职业:桥梁研究
  • 批准号:
    2338178
  • 财政年份:
    2024
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Standard Grant
CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
  • 批准号:
    2338346
  • 财政年份:
    2024
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Continuing Grant
Design of high fatigue strength ferrite-martensite steel based on microstructural control and strengthening mechanisms
基于显微组织控制和强化机制的高疲劳强度铁素体-马氏体钢设计
  • 批准号:
    22KJ1400
  • 财政年份:
    2023
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The initiation and arrest mechanisms of small internal cracks in very high cycles fatigue regime in titanium alloys
钛合金高周疲劳状态下细小内部裂纹的萌生和阻止机制
  • 批准号:
    22KJ0059
  • 财政年份:
    2023
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Understanding rock Fatigue mechanisms in Underground hydrogen StoragE: FUSE
了解地下储氢中的岩石疲劳机制:FUSE
  • 批准号:
    NE/Y002970/1
  • 财政年份:
    2023
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Research Grant
Acceleration and retardation behavior of creep-fatigue crack propagation in Ni-base superalloys: Mechanisms and quantitative modelling
镍基高温合金中蠕变疲劳裂纹扩展的加速和延迟行为:机制和定量建模
  • 批准号:
    23K03600
  • 财政年份:
    2023
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Neurobiological Mechanisms of Fatigue in Health and after COVID-19
健康人和 COVID-19 后疲劳的神经生物学机制
  • 批准号:
    10722396
  • 财政年份:
    2023
  • 资助金额:
    $ 28.04万
  • 项目类别:
Mechanisms of neuro-muscular fatigue in sprint running
短跑中神经肌肉疲劳的机制
  • 批准号:
    23K16693
  • 财政年份:
    2023
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mechanisms of fatigue pre-conditionning (FPC)
疲劳预调节(FPC)机制
  • 批准号:
    RGPIN-2020-04318
  • 财政年份:
    2022
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling the mechanisms and the biomechanical manifestations of muscle fatigue: the good, the bad, and the in-between
模拟肌肉疲劳的机制和生物力学表现:好的、坏的和介于两者之间的
  • 批准号:
    RGPIN-2022-04757
  • 财政年份:
    2022
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了