Perspectives on Speech Separation -- A Workshop

语音分离的观点——研讨会

基本信息

项目摘要

The situation that may be the most detrimental to verbal communication is when a speech signal is embedded in a background of other, interfering speech, such as crowd noise or echoes of the target speech in a reverberant room. It is also known that speech understanding in such a "cocktail-party" situation is especially difficult for elderly individuals, even for those with relatively good hearing. Over the last 25 years, data collected by experimental psychologists, audiologists, and neuroscientists have unveiled some important characteristics of the process of separating speech sources, as well of its dysfunction, and developed models to explain and predict human performance in "cocktail-party" settings. Motivated by the same data, and by the fact that human listening performance under such difficult conditions has its limits, information scientists have become increasingly interested in finding computational solutions to speech separation. The last 10-15 years have generated an unprecedented rush toward the development of diverse computational schemes aimed at automatic separation of speech sources by filtering out unwanted speech and enhancing the target. Nevertheless, to the onlooker of this work there appears to be no general solution to this problem. Because the facts, models, and schemes are dispersed over different scientific fields and in specific sub-areas, it is likely that for any solution to bear fruit requires a concerted effort among scientists from these various disciplines.The objective of this multidisciplinary, international workshop is to bring together an invited panel of around twenty scientist-experts whose work represents the cutting edge of speech separation within their particular discipline. Over a two-day period, these experts will present their own and discuss each other's research, in addition to taking part in general discussions in which the current status and future trends of speech separation research will be examined. The workshop will also produce a report containing all presentations, as well as highlights of the discussions.
最不利于语言交流的情况是,当语音信号被嵌入到其他干扰语音的背景中,例如人群噪音或混响室中目标语音的回声。众所周知,在这种“鸡尾酒会”的情况下,老年人的言语理解尤其困难,即使对那些听力相对较好的人也是如此。在过去的25年里,实验心理学家、听力学家和神经科学家收集的数据揭示了分离语音来源过程的一些重要特征,以及它的功能障碍,并开发了一些模型来解释和预测人类在“鸡尾酒会”环境中的表现。由于同样的数据,以及人类在如此困难的条件下的听力表现有其局限性,信息科学家对寻找语音分离的计算解决方案越来越感兴趣。在过去的10-15年里,各种旨在通过过滤不需要的语音和增强目标语音来实现语音源自动分离的计算方案得到了前所未有的发展。然而,对于这项工作的旁观者来说,这个问题似乎没有普遍的解决办法。由于事实、模型和方案分散在不同的科学领域和特定的子领域,任何解决方案都可能需要这些不同学科的科学家共同努力才能取得成果。这个多学科的国际研讨会的目标是召集一个由大约20位科学家专家组成的特邀小组,他们的工作代表了各自学科中言语分离的前沿。在为期两天的时间里,这些专家将展示他们自己的研究并讨论彼此的研究,此外还将参加一般性的讨论,讨论语音分离研究的现状和未来趋势。讲习班还将编写一份报告,其中载有所有发言以及讨论的要点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pierre Divenyi其他文献

The Dynamics of Speech Production and Perception, (編集本収録:Richard E. Turner, Marc A. Al-Hames, David R. R. Smith, Hideki Kawahara Toshio Irino, and Roy D. Patterson, Vowel normalisation: Time-domain processing of the internal dynamics of speech)
语音产生和感知的动态,(由 Richard E. Turner、Marc A. Al-Hames、David R. R. Smith、Hideki Kawahara Toshio Irino 和 Roy D. Patterson 编辑,元音归一化:语音内部动态的时域处理演讲)
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pierre Divenyi;Steven Greenberg;and George Meyer (Eds.)
  • 通讯作者:
    and George Meyer (Eds.)

Pierre Divenyi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pierre Divenyi', 18)}}的其他基金

Participation of Students and Postdocs at Workshop on Brain Rhythms and Speech Perception/Production
学生和博士后参加脑节律和言语感知/产生研讨会
  • 批准号:
    0837972
  • 财政年份:
    2008
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Separating Speech from Speech Noise to Improve Intelligibility
合作研究:将语音与语音噪声分离以提高清晰度
  • 批准号:
    0534841
  • 财政年份:
    2006
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Standard Grant

相似海外基金

Deep Learning Based Complex Spectral Mapping for Multi-Channel Speaker Separation and Speech Enhancement
基于深度学习的复杂频谱映射,用于多通道说话人分离和语音增强
  • 批准号:
    2125074
  • 财政年份:
    2021
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Standard Grant
Audio-Visual Speech Enhancement and Speaker Separation
视听语音增强和扬声器分离
  • 批准号:
    2243852
  • 财政年份:
    2019
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Studentship
Deep neural networks for multi-channel speaker localization and speech separation
用于多通道说话者定位和语音分离的深度神经网络
  • 批准号:
    1808932
  • 财政年份:
    2018
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Standard Grant
Development of speech articulation recovery support system based on a phonological / individual separation model
基于语音/个体分离模型的言语清晰度恢复支持系统的开发
  • 批准号:
    17K01568
  • 财政年份:
    2017
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Microphone array processing techniques for the enhancement, dereverberation and separation of speech
用于语音增强、去混响和分离的麦克风阵列处理技术
  • 批准号:
    477494-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Collaborative Research and Development Grants
Source separation and noise reduction for automatic speech recognition in dynamic acoustic scenarios
动态声学场景中自动语音识别的源分离和降噪
  • 批准号:
    316471544
  • 财政年份:
    2016
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Research Grants (Transfer Project)
Microphone array processing techniques for the enhancement, dereverberation and separation of speech
用于语音增强、去混响和分离的麦克风阵列处理技术
  • 批准号:
    477494-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Collaborative Research and Development Grants
RI: Medium: Deep Neural Networks for Robust Speech Recognition through Integrated Acoustic Modeling and Separation
RI:中:通过集成声学建模和分离实现鲁棒语音识别的深度神经网络
  • 批准号:
    1409431
  • 财政年份:
    2014
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Continuing Grant
Improving speech intelligibility using acoustic source separation with audio frequency
使用音频声源分离提高语音清晰度
  • 批准号:
    EP/H502335/1
  • 财政年份:
    2010
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Research Grant
Audio and Video Based Speech Separation for Multiple Moving Sources Within a Room Environment
针对房间环境内多个移动源的基于音频和视频的语音分离
  • 批准号:
    EP/H049665/1
  • 财政年份:
    2010
  • 资助金额:
    $ 4.22万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了