ITR/AP COLLABORATIVE RESEARCH: Real Time Optimization for Data Assimilation and Control of Large Scale Dynamic Simulations
ITR/AP 合作研究:大规模动态模拟数据同化和控制的实时优化
基本信息
- 批准号:0352334
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-27 至 2007-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will create and apply algorithms and software tools for on-line simulations that continuously (1) assimilate sensor data from dynamic physical processes, and (2) generate optimal strategies for their control. A number of critical industrial, scientific, and societal problems stand to benefit from this research such as aerodynamics, energy, geophysics, infrastructure, manufacturing, medicine, chemical process and environmental applications; two of these will be the focus of the current research. In these and many other cases, the underlying models have become capable of sufficient fidelity to yield meaningful predictions, provided unknown parameters (typically initial/boundary conditions, material coefficients, sources, or geometry) can be estimated appropriately using observational data.The critical step is the solution of a large-scale nonlinear optimization problem that is constrained by the simulation equations, typically PDEs or their reduced order models. A data assimilation phase will seek to minimize the mismatch between sensor data and model-based predictions by adjusting unknown parameters of the PDE simulation, and the optimal control phase will find an optimal control strategy based on the updated model.Despite advances in hardware, networks, parallel PDE solvers, large-scale optimization algorithms, and real-time ODE optimization, significant algorithmic and software challenges must be overcome before the ultimate goal of real-time PDE data assimilation and optimal control can be realized. Needed are fundamentally new PDE optimization algorithms that must: (1) run sufficiently quickly to permit decision-making at time scales of interest; (2) scale to the large numbers of variables and constraints that characterize PDE optimization and processors that characterize high-end systems; (3) adjust to different solution accuracy requirements; (4) target time-dependent objectives and constraints; (5) tolerate incomplete, uncertain, or errant data; (6) be capable of bootstrapping current solutions; (7) yield meaningful results when terminated prematurely; and (8) be robust in the face of ill-posedness.To create, apply, and disseminate the enabling technologies for real-time PDE data assimilation and optimal control, the project will: (1) Develop algorithms and tools for real-time data assimilation and optimal control that meet the above specifications for a class of important applications. (2) Implement and publicly distribute these algorithms within an object-oriented framework that incorporates problem structure, interfaces easily with high performance PDE solver libraries fosters applicability of our tools to a broad range of real-time data assimilation and optimal control problems, and enables extension of the algorithms without interfering with applications. (3) Apply these algorithms and tools to two critical environmental and industrial problems: modeling and control of chemical vapor deposition (CVD) reactors and of wildland firespread. (4) Interact and work with other user communities to ensure that the algorithms and software we produce are useful across a broad range of applications.
该项目将创建和应用在线模拟的算法和软件工具,不断(1)从动态物理过程中吸收传感器数据,(2)生成最佳控制策略。 许多关键的工业,科学和社会问题将从这项研究中受益,如空气动力学,能源,物理学,基础设施,制造业,医学,化学过程和环境应用;其中两个将是当前研究的重点。在这些和许多其他情况下,基本模型已经能够足够逼真地产生有意义的预测,提供未知参数(通常是初始/边界条件,材料系数,源或几何形状)可以使用观测数据进行适当的估计。关键步骤是解决由模拟方程约束的大规模非线性优化问题,通常是偏微分方程或它们的降阶模型。数据同化阶段将通过调整PDE模拟的未知参数来寻求最小化传感器数据和基于模型的预测之间的不匹配,并且最优控制阶段将基于更新的模型找到最优控制策略。尽管在硬件,网络,并行PDE求解器,大规模优化算法和实时ODE优化方面取得了进展,在实现实时偏微分方程数据同化和最佳控制的最终目标之前,必须克服重要的算法和软件挑战。需要的是基本上新的PDE优化算法,其必须:(1)运行足够快以允许在感兴趣的时间尺度上进行决策;(2)缩放到表征PDE优化的大量变量和约束以及表征高端系统的处理器;(3)调整到不同的解精度要求;(4)针对时间相关的目标和约束;(5)容忍不完整的、不确定的或错误的数据;(6)能够引导当前的解决方案;(7)在过早终止时产生有意义的结果;(8)在面对不适定性时具有鲁棒性。为了创建、应用和传播实时PDE数据同化和最优控制的使能技术,该项目将:(1)为一类重要应用开发满足上述规范的实时数据同化和最优控制算法和工具。(2)在一个面向对象的框架内实现和公开分发这些算法,该框架包含问题结构,易于与高性能PDE求解器库接口,可促进我们的工具适用于广泛的实时数据同化和最优控制问题,并在不干扰应用程序的情况下扩展算法。(3)将这些算法和工具应用于两个关键的环境和工业问题:化学气相沉积(CVD)反应器和荒地火灾蔓延的建模和控制。(4)与其他用户社区互动和合作,以确保我们生产的算法和软件在广泛的应用中有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Keyes其他文献
Stability in a New Destination: Mexican Immigrants in Clark County, Ohio
新目的地的稳定:俄亥俄州克拉克县的墨西哥移民
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
David Keyes - 通讯作者:
David Keyes
Analytic Proofs of Certain MacWilliams Identities
某些麦克威廉斯恒等式的分析证明
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
David Keyes - 通讯作者:
David Keyes
Multicultural Communication Awareness for Police
警察的多元文化沟通意识
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
David Keyes - 通讯作者:
David Keyes
Headache that will not go away...Third ED visit is the charm?
- DOI:
10.1016/j.ajem.2024.06.032 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
Alice Holmquist;Daniel Calick;John Perkins;David Keyes - 通讯作者:
David Keyes
?p-codes, theta functions and the Hamming weight MacWilliams identity
?p 代码、theta 函数和汉明权重 MacWilliams 恒等式
- DOI:
10.3934/amc.2012.6.401 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
David Keyes - 通讯作者:
David Keyes
David Keyes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Keyes', 18)}}的其他基金
ITR: Collaborative Research - ASE - (sim+dmc): Image-based Biophysical Modeling: Scalable Registration and Inversion Algorithms and Distributed Computing
ITR:协作研究 - ASE - (sim dmc):基于图像的生物物理建模:可扩展配准和反演算法以及分布式计算
- 批准号:
0427464 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Continuing Grant
ITR/AP COLLABORATIVE RESEARCH: Real Time Optimization for Data Assimilation and Control of Large Scale Dynamic Simulations
ITR/AP 合作研究:大规模动态模拟数据同化和控制的实时优化
- 批准号:
0121207 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
WORKSHOP: Parallel CFD'99 International Conference
研讨会:并行 CFD99 国际会议
- 批准号:
9907896 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
MDC: A Numerical Laboratory for Multi-Model Multi-Domain Computational Methods in Aerodynamics and Acoustics
MDC:空气动力学和声学多模型多领域计算方法的数值实验室
- 批准号:
9527169 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing Grant
Advanced Computational Techniques in Boundary Element Analysis
边界元分析中的先进计算技术
- 批准号:
9396327 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Continuing Grant
Advanced Computational Techniques in Boundary Element Analysis
边界元分析中的先进计算技术
- 批准号:
9020733 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Continuing Grant
Acceleration of Primitive Variable Hydrocodes by the Non- Linear Generalized Minimum Residual Method
非线性广义最小残差法对原始变量水编码的加速
- 批准号:
8707109 - 财政年份:1987
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
基于抑制AP-1信号增强胆管癌光动力治疗并逆转免疫抑制微环境的分子机制与靶向干预研究
- 批准号:JCZRQN202500115
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
脑胶质瘤抑瘤基因LRRC4促进含AP2A1的高尔基体网格囊泡释放调控线粒体嵴结构与氧化磷酸化影响胶质母细胞瘤生长和侵袭的机制研究
- 批准号:2025JJ60498
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
FTO/AP-2α-m6A/LITAF反馈环路调控子痫前期滋养细胞迁移和侵袭的作用和机制研究
- 批准号:2025JJ50721
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AP-1激活miR-22/miR-210反馈调控文昌鱼JNK通路先天免疫响应的机制研究
- 批准号:QN25C040003
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AP2B通过WNT/BETA-CATENIN调控颅骨元件成骨活性差异的 分子机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
新融合基因AP1B1-EWSR1促进骨肉瘤发生发展的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Ap-Exo III 联合模式识别构建降尿酸药
物筛选新方法的研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
姜黄素烟酸酯经Caveolin-1/ERK/AP-1通路调控血管平滑肌细胞增殖影响动脉粥样硬化病变研究
- 批准号:2025JJ70208
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
ALOX5AP通过氧化应激调控细胞外基质微环境对青光眼滤过术后瘢痕形成的作用及机制研究
- 批准号:2025JJ60495
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于AP2α/PDHA1信号通路的有氧糖酵解阻断肺癌细胞铜死亡的作用机制
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: ITR/AP: Towards The Development Of Operational Adjoint Method Based Ensemble Prediction Techniques For El Nino Southern Oscillation
合作研究:ITR/AP:致力于开发基于运算伴随方法的厄尔尼诺南方涛动集合预测技术
- 批准号:
0628690 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing Grant
ITR/AP: Collaborative Research: Modular Ocean Data Assimilation
ITR/AP:合作研究:模块化海洋数据同化
- 批准号:
0625631 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing Grant
ITR/AP: Collaborative Research: Modular Ocean Data Assimilation
ITR/AP:合作研究:模块化海洋数据同化
- 批准号:
0341139 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
ITR/AP: Collaborative Research: Model Reduction of Dynamical Systems for Real Time Control
ITR/AP:协作研究:实时控制动态系统的模型简化
- 批准号:
0324944 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
ITR/AP: COLLABORATIVE RESEARCH: A Simulation Based Computational Approach using Machine Learning to Study Stochastic Business Games
ITR/AP:协作研究:使用机器学习研究随机商业博弈的基于模拟的计算方法
- 批准号:
0341702 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant
ITR/AP: Collaborative Research: Model Reduction of Dynamical Systems for Real-time Control
ITR/AP:协作研究:用于实时控制的动态系统模型简化
- 批准号:
0325227 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
ITR/AP: Collaborative Research: Model Reduction of Dynamical Systems for Real-time Control
ITR/AP:协作研究:用于实时控制的动态系统模型简化
- 批准号:
0325081 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH: ITR/AP : Novel Scalable Simulation Techniques for Chemistry, Materials Science and Biology
合作研究:ITR/AP:化学、材料科学和生物学的新型可扩展模拟技术
- 批准号:
0229959 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: ITR/AP: Predictive Contaminant Tracking Using Dynamic Data Driven Application Simulations (DDDAS) Techniques
合作研究:ITR/AP:使用动态数据驱动应用模拟 (DDDAS) 技术进行预测污染物跟踪
- 批准号:
0218721 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: ITR/AP Modular Ocean Data Assimilation
合作研究:ITR/AP 模块化海洋资料同化
- 批准号:
0121332 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant