Polyhedral and Graph Theoretic Methods in Mixed Integer and Combinatorial Optimization
混合整数和组合优化中的多面体和图论方法
基本信息
- 批准号:0352885
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2007-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project addresses theoretical and computational aspects of integer programming and combinatorial optimization, using the tools of linear algebra and graph theory. It is focused on the approach called lift-and-project, developed in the nineties and recently incorporated into state-of-the-art software. Lift-and-project cuts are generated from a disjunction involving a combination of inequalities. One topic for investigation is how to simultaneously optimize the weighted combination of inequalities used in the disjunction underlying the cut, and the choice of multipliers in the monoidal strengthening of the resulting cut. Another topic in the same direction offers to improve the performance of Gomory cuts for mixed integer linear programs, by combining inequalities in well-defined ways. Other topics, aimed at understanding the structure of Lehman matrices and almost totally unimodular matrices, or an algorithm for finding an odd hole in a graph, are related to two important classes of problems: set packing and set covering. A better understanding of these classes of problems is a central aspect of the very active research currently occurring in the field of combinatorial optimization.To the extent that this project will be successful, it will advance the state of the art in mixed integer and combinatorial optimization, and thereby enhance our problem solving ability in a broad range of activities, from industrial production to logistics and telecommunications. The tools created here may be as useful in improving homeland security, as they may be instrumental in reinforcing our technological leadership. From the late fifties to the early nineties, integer programming was a way to formulate almost any optimization problem, yet the available computer codes could only handle toy problems of minuscule size. During the last decade the state of the art has radically changed, and today well over half of the integer programs formulated can also be solved. This project is expected to significantly accelerate this change.
本项目利用线性代数和图论的工具,研究整数规划和组合优化的理论和计算方面。它专注于一种名为Lift-and-Project的方法,该方法开发于90年代,最近被整合到最先进的软件中。提升和项目削减是从涉及不平等组合的析取中产生的。一个要研究的主题是如何同时优化在切割基础上的析取中使用的加权不等式组合,以及在所产生的切割的一元化强化中的乘子的选择。同一方向的另一个主题提出通过以明确定义的方式组合不等式来提高混合整数线性规划的Gomory割的性能。其他主题旨在理解Lehman矩阵和几乎完全么模矩阵的结构,或者寻找图中奇洞的算法,涉及两类重要的问题:集合填充和集合覆盖。更好地理解这类问题是目前在组合优化领域进行的非常活跃的研究的中心方面。该项目将在一定程度上成功地推进混合整数和组合优化的最新技术,从而提高我们在从工业生产到物流和电信等广泛活动中解决问题的能力。这里创造的工具在改善国土安全方面可能同样有用,因为它们可能有助于加强我们的技术领先地位。从五十年代末到九十年代初,整数规划是一种用来描述几乎任何优化问题的方法,但可用的计算机代码只能处理微小的玩具问题。在过去的十年里,技术水平发生了根本性的变化,今天,超过一半的整数规划也可以解决。该项目预计将大大加快这一变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Egon Balas其他文献
Integer programming and convex analysis: Intersection cuts from outer polars
- DOI:
10.1007/bf01584553 - 发表时间:
1972-02-01 - 期刊:
- 影响因子:2.500
- 作者:
Egon Balas - 通讯作者:
Egon Balas
Job Shop Scheduling With Deadlines
- DOI:
10.1023/a:1009750409895 - 发表时间:
1998-12-01 - 期刊:
- 影响因子:1.100
- 作者:
Egon Balas;Giuseppe Lancia;Paolo Serafini;Alkiviadis Vazacopoulos - 通讯作者:
Alkiviadis Vazacopoulos
Robert G. Jeroslow 1942–1988
- DOI:
10.1007/bf01531066 - 发表时间:
2013-10-22 - 期刊:
- 影响因子:1.000
- 作者:
Egon Balas - 通讯作者:
Egon Balas
On the relationship between standard intersection cuts, lift-and-project cuts, and generalized intersection cuts
- DOI:
10.1007/s10107-015-0975-1 - 发表时间:
2016-01-14 - 期刊:
- 影响因子:2.500
- 作者:
Egon Balas;Tamás Kis - 通讯作者:
Tamás Kis
Logical Constraints as Cardinality Rules: Tight Representation
- DOI:
10.1023/b:joco.0000031413.33955.62 - 发表时间:
2004-06-01 - 期刊:
- 影响因子:1.100
- 作者:
Egon Balas - 通讯作者:
Egon Balas
Egon Balas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Egon Balas', 18)}}的其他基金
Mixed Integer Optimization: New Cut Generation Paradigms
混合整数优化:新的切割生成范式
- 批准号:
1560828 - 财政年份:2016
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
(Mixed) Integer and Combinatorial Optimization: New Convexification Techniques
(混合)整数和组合优化:新的凸化技术
- 批准号:
1263239 - 财政年份:2013
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Integer and Combinatorial Optimization: Intersection Cuts from Multiple Rows
整数和组合优化:从多行进行交集切割
- 批准号:
1024554 - 财政年份:2010
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Mixed Integer and Combinatorial Optimization: Lift-and-Project and Polyhedral Combinatorics
混合整数和组合优化:提升投影和多面体组合
- 批准号:
0653419 - 财政年份:2007
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Integer and Combinatorial Optimization: Polyhedral and Graph Theoretic Methods
整数和组合优化:多面体和图论方法
- 批准号:
0098427 - 财政年份:2001
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Combinatorial Optimization and Integer Programming: Polyhedral Analysis and Algorithms
组合优化和整数规划:多面体分析和算法
- 批准号:
9802773 - 财政年份:1998
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
GIG: Algorithms, Combinatorics & Optimization: An Interdisciplinary Ph.D. Program
GIG:算法、组合学
- 批准号:
9509581 - 财政年份:1995
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Polyherdral Methods in Integer and Combinatorial Optimization
整数和组合优化中的多面体方法
- 批准号:
9424348 - 财政年份:1995
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Integer and Combinatorial Optimization: Polyhedral Methods and Algorithms
整数和组合优化:多面体方法和算法
- 批准号:
9201340 - 财政年份:1992
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Second Integer Programming and Combinatorial Optimization Conference; Pittsburgh, PA; May 25-27, 1992
第二届整数规划与组合优化会议;
- 批准号:
9114298 - 财政年份:1991
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
相似国自然基金
基于Graph-PINN的层结稳定度参数化建模与沙尘跨介质耦合传输模拟研
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
平面三角剖分flip graph的强凸性研究
- 批准号:12301432
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于graph的多对比度磁共振图像重建方法
- 批准号:61901188
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
基于de bruijn graph梳理的宏基因组拼接算法开发
- 批准号:61771009
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Graph和ISA的红外目标分割与识别方法研究
- 批准号:61101246
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
中国Web Graph的挖掘与应用研究
- 批准号:60473122
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Support for Safe Driving Using Graph Theoretic Functional Brain Network Analysis and Non-invasive Brain Stimulation
使用图论功能脑网络分析和非侵入性脑刺激支持安全驾驶
- 批准号:
23KJ1643 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Artificial Intelligence and Network Science: Solution Concepts, Graph-Theoretic Characterizations, and Their Societal Aspects
人工智能和网络科学:解决方案概念、图论特征及其社会方面
- 批准号:
RGPIN-2019-04904 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Towards a Theoretic Foundation for Optimal Deep Graph Learning
协作研究:为最优深度图学习奠定理论基础
- 批准号:
2134081 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Collaborative Research: Towards a Theoretic Foundation for Optimal Deep Graph Learning
协作研究:为最优深度图学习奠定理论基础
- 批准号:
2134079 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Collaborative Research: Towards a Theoretic Foundation for Optimal Deep Graph Learning
协作研究:为最优深度图学习奠定理论基础
- 批准号:
2134080 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Artificial Intelligence and Network Science: Solution Concepts, Graph-Theoretic Characterizations, and Their Societal Aspects
人工智能和网络科学:解决方案概念、图论特征及其社会方面
- 批准号:
RGPIN-2019-04904 - 财政年份:2021
- 资助金额:
$ 42万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence and Network Science: Solution Concepts, Graph-Theoretic Characterizations, and Their Societal Aspects
人工智能和网络科学:解决方案概念、图论特征及其社会方面
- 批准号:
RGPIN-2019-04904 - 财政年份:2020
- 资助金额:
$ 42万 - 项目类别:
Discovery Grants Program - Individual
Artificial Intelligence and Network Science: Solution Concepts, Graph-Theoretic Characterizations, and Their Societal Aspects
人工智能和网络科学:解决方案概念、图论特征及其社会方面
- 批准号:
RGPIN-2019-04904 - 财政年份:2019
- 资助金额:
$ 42万 - 项目类别:
Discovery Grants Program - Individual
Estimation of neural interactions by information-geometric and graph-theoretic approaches
通过信息几何和图论方法估计神经相互作用
- 批准号:
541558-2019 - 财政年份:2019
- 资助金额:
$ 42万 - 项目类别:
University Undergraduate Student Research Awards
An operator-theoretic approach to graph rigidity
图刚性的算子理论方法
- 批准号:
EP/S00940X/1 - 财政年份:2019
- 资助金额:
$ 42万 - 项目类别:
Research Grant