Collaborative Research: FRG: Applications of Multiple Dirichlet Series to Analytic Number Theory
合作研究:FRG:多重狄利克雷级数在解析数论中的应用
基本信息
- 批准号:0354534
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-15 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for Collaborative FRG proposals DMS- 0354534, DMS -0353964, DMS-0354662 and DMS-0354582 of Hoffstein, Bump Friedberg and GoldfeldThe object of this proposal is to continue todevelop the theory of multiple Dirichlet seriesalong a number of highly promising directions.These include the formulation of aclassification theory via Dynkin diagrams andmetaplectic forms, analysis of naturalconstructions as inner products of automorphic forms on GL(n),and investigating examples coming fromEisenstein series related to deformation theoryof universal elliptic curves. Manyapplications are expected to the analysis of various familiesof L-functions The theory of L-functions of one complex variable iscentral in modern number theory. Special values ofL-functions have provided links between such diverseareas of mathematics as algebraic geometry, topology,probability and statistics, the representation theory ofinfinite dimensional Lie groups, and mathematicalphysics. In contrast, the theory of L-functions ofseveral complex variables (multipleDirichlet series) is still in its infancy. A large part of thefoundational theory was developedby the PI's and Postdocs of this proposal, who havebeen collaborating in teams, over thelast twenty years. The accumulated scientific results,combined with a mass sustained joint effort of thePI's, now point to the possibility of major breakthroughs.There is also an additionaltraining component. Workshops will be held each yearas well as short courses aimed at attracting graduate students, postdocs, andmathematicians in related fields. The motivationwill be to categorize and advertisethe major accessible problems in the field, tomap out progress made, and to prepare theparticipants for research projects.
Hoffstein、Bump Friedberg和Goldfield的协同FRG建议DMS-0354534、DMS-0353964、DMS-0354662和DMS-0354582本建议的目的是沿着几个很有希望的方向继续发展多重狄利克雷级数理论,包括通过动态图和亚正则形式建立类化理论,分析GL(N)上作为自同构形式内积的自然结构,以及研究来自Eisenstein级数的与万能椭圆曲线的变形理论有关的例子。L函数族的分析可望有更多的应用。一复变数的L函数理论是现代数论的核心。L-函数的特殊值在代数几何、拓扑学、概率和统计学、无限维李群的表示理论和数学物理等不同的数学领域之间提供了联系。相比之下,多元复变数(多重狄利克雷级数)的L函数理论还处于起步阶段。基本理论的很大一部分是由该提案的PI和博士后开发的,他们在过去的20年里一直在团队中合作。积累的科学成果,再加上国际和平组织的大规模持续共同努力,现在表明有可能取得重大突破。此外,还有一个额外的培训部分。每年将举办研讨会和短期课程,旨在吸引相关领域的研究生、博士后和数学家。其动机将是对该领域中的主要可接触问题进行分类和宣传,绘制出所取得的进展,并为参与者的研究项目做好准备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Hoffstein其他文献
Theta functions on then-fold metaplectic cover of SL(2)—the function field case
- DOI:
10.1007/bf01231881 - 发表时间:
1992-12-01 - 期刊:
- 影响因子:3.600
- 作者:
Jeffrey Hoffstein - 通讯作者:
Jeffrey Hoffstein
Real zeros of Eisenstein series
- DOI:
10.1007/bf01215017 - 发表时间:
1982-06-01 - 期刊:
- 影响因子:1.000
- 作者:
Jeffrey Hoffstein - 通讯作者:
Jeffrey Hoffstein
Some analytic bounds for zeta functions and class numbers
- DOI:
10.1007/bf02139701 - 发表时间:
1979-12-01 - 期刊:
- 影响因子:3.600
- 作者:
Jeffrey Hoffstein - 通讯作者:
Jeffrey Hoffstein
Cubic metaplectic forms onGL (3)
- DOI:
10.1007/bf01388743 - 发表时间:
1986-10-01 - 期刊:
- 影响因子:3.600
- 作者:
Daniel Bump;Jeffrey Hoffstein - 通讯作者:
Jeffrey Hoffstein
Jeffrey Hoffstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Hoffstein', 18)}}的其他基金
Collaborative Research: SaTC: TTP: Medium: NextGenPQ: Post-quantum Schemes for Next Generation Applications
合作研究:SaTC:TTP:中:NextGenPQ:下一代应用的后量子方案
- 批准号:
2026921 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Development and Evaluation of Next Generation Homomorphic Encryption Schemes
TWC:媒介:协作:下一代同态加密方案的开发和评估
- 批准号:
1561709 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Arithmetic 2015: Elliptic Curves, Diophantine Geometry, and Dynamics
算术 2015:椭圆曲线、丢番图几何和动力学
- 批准号:
1517886 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: Homomorphic Encryption, Ideal Membership, and Fourier Transforms
EAGER:同态加密、理想隶属度和傅立叶变换
- 批准号:
1349908 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Combinatorial representation theory, multiple Dirichlet series and moments of L-functions.
FRG:协作研究:组合表示理论、多重狄利克雷级数和 L 函数矩。
- 批准号:
0652312 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Applications of Double Dirichlet Series to Automorphic Forms and Number Theory
双狄利克雷级数在自守形式和数论中的应用
- 批准号:
0088921 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Continuing Grant
Double Dirichlet Series and Generalized Metaplectic Forms
双狄利克雷级数和广义超折形式
- 批准号:
9700757 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Applications of Rankin-Selberg Convolutions to Automorphic Forms and Number Theory
数学科学:Rankin-Selberg 卷积在自同构形式和数论中的应用
- 批准号:
9322150 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Continuing Grant
Travel of U.S.-Scientist under the U.S-India Exchange of Scientists Programs
美印科学家交流计划下的美国科学家旅行
- 批准号:
9023852 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Theta Functions and Eisenstein Serieson the Metaplectic Group
数学科学:Theta 函数和爱森斯坦 Metaplectic 群系列
- 批准号:
9023202 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant