Tight Feasibility Constraints in Engineering Design

工程设计中严格的可行性约束

基本信息

  • 批准号:
    0400214
  • 负责人:
  • 金额:
    $ 25.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-05-15 至 2008-04-30
  • 项目状态:
    已结题

项目摘要

This research will assess the potential of a new method that tightly sandwiches nonlinear functions by piecewise linear functions, for efficiently finding solutions to optimization problems with tight feasibility constraints. A common class of problems in engineering design requires finding and optimizing functions that, over an interval, fit between narrowly separated lower and upper bounds. One typical example considers the components of a load-bearing beam or wire that has to fit into a narrow space between two existing surfaces and is to be optimized with respect to stiffness. Currently, such problems require extensive and expensive trial-and-error human intervention. The new theory and software tools will automate the search and make the trade-off between tolerances and computational budget explicit. The approach can be used in time-sensitive scenarios, such as interactive geometric design tools, and is expected to free computational cycles for the additional engineering objectives such as stiffness, heat conduction, uncertainty, cost or schedule. On a broader scale, the new tools will effectively extend existing computational geometry techniques to curved paths and surfaces. Tables, tools and tutorial examples will be disseminate as a part of the open-source SubLiME software library. The educational initiative will focus on adjusting the syllabus of undergraduate numerical computing to increase awareness of optimization problems; and to teach how to formulate and solve such problems. Aspects of the research to the general public will be communicated via two exhibitions featuring engineering analysis.
本研究将评估一种新方法的潜力,该方法通过分段线性函数紧密夹持非线性函数,有效地找到具有严格可行性约束的优化问题的解决方案。工程设计中的一类常见问题需要找到并优化函数,这些函数在一个区间内适合于严格分离的下限和上限之间。一个典型的例子考虑的是承载梁或线的组件,其必须装配到两个现有表面之间的狭窄空间中,并且在刚度方面进行优化。目前,此类问题需要大量且昂贵的试错人工干预。新的理论和软件工具将使搜索自动化,并使公差和计算预算之间的权衡变得明确。该方法可用于时间敏感的情况下,如交互式几何设计工具,并预计将释放计算周期的额外的工程目标,如刚度,热传导,不确定性,成本或进度。 在更广泛的范围内,新工具将有效地将现有的计算几何技术扩展到弯曲的路径和表面。 表格、工具和教程示例将作为开放源码SubLiME软件库的一部分分发。教育举措将侧重于调整本科数值计算的教学大纲,以提高对优化问题的认识;并教授如何制定和解决这些问题。 将通过两个以工程分析为特色的展览向公众传达研究的各个方面。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

jorg peters其他文献

jorg peters的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('jorg peters', 18)}}的其他基金

AF: Small: Splines on Optimal Crystallographic Lattices
AF:小:最佳晶体晶格上的样条
  • 批准号:
    1117695
  • 财政年份:
    2011
  • 资助金额:
    $ 25.45万
  • 项目类别:
    Standard Grant
High-Quality Shape Design and Surface Representation
高质量的形状设计和表面表现
  • 批准号:
    0728797
  • 财政年份:
    2007
  • 资助金额:
    $ 25.45万
  • 项目类别:
    Standard Grant
High-quality Spline and Subdivision Surfaces
高质量的样条和细分曲面
  • 批准号:
    0430891
  • 财政年份:
    2004
  • 资助金额:
    $ 25.45万
  • 项目类别:
    Continuing Grant
NYI: Surface Splines Over Irregular Meshes
NYI:不规则网格上的曲面样条线
  • 批准号:
    0096116
  • 财政年份:
    1999
  • 资助金额:
    $ 25.45万
  • 项目类别:
    Continuing Grant
Hierarchical, Robust and Fair Modeling with Higher-Order Surface Elements
具有高阶表面元素的分层、稳健和公平建模
  • 批准号:
    9901894
  • 财政年份:
    1999
  • 资助金额:
    $ 25.45万
  • 项目类别:
    Standard Grant
NYI: Surface Splines Over Irregular Meshes
NYI:不规则网格上的曲面样条线
  • 批准号:
    9457806
  • 财政年份:
    1994
  • 资助金额:
    $ 25.45万
  • 项目类别:
    Continuing Grant
Improving the Shape of Surfaces by Perturbation
通过扰动改善表面形状
  • 批准号:
    9211322
  • 财政年份:
    1992
  • 资助金额:
    $ 25.45万
  • 项目类别:
    Continuing Grant
Improving the Shape of Surfaces by Perturbation
通过扰动改善表面形状
  • 批准号:
    9396164
  • 财政年份:
    1992
  • 资助金额:
    $ 25.45万
  • 项目类别:
    Continuing Grant

相似海外基金

Investigate the feasibility of altering cancer drug sensitivity through modulation of AHR activity
研究通过调节 AHR 活性改变癌症药物敏感性的可行性
  • 批准号:
    24K10327
  • 财政年份:
    2024
  • 资助金额:
    $ 25.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Techno-economic Feasibility Study of ClimaHtech innovative clean maritime solutions
ClimaHtech 创新清洁海事解决方案的技术经济可行性研究
  • 批准号:
    10098100
  • 财政年份:
    2024
  • 资助金额:
    $ 25.45万
  • 项目类别:
    Collaborative R&D
Tackling Youth Loneliness in Urban Areas: Measuring feasibility, acceptability and benefits of a social interaction intervention
解决城市地区青少年的孤独感:衡量社交互动干预的可行性、可接受性和益处
  • 批准号:
    ES/Z502522/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.45万
  • 项目类别:
    Research Grant
Memory Reshaping for Depression: A Remote Digital Randomised Controlled Feasibility Trial
抑郁症记忆重塑:远程数字随机控制可行性试验
  • 批准号:
    MR/Y008545/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.45万
  • 项目类别:
    Research Grant
A self-guided and monitored innovative AI-driven parental support intervention (mobile app), for families caring for a young one that self-harms: feasibility study
一种自我指导和监控的创新型人工智能驱动的家长支持干预措施(移动应用程序),适用于照顾自残儿童的家庭:可行性研究
  • 批准号:
    10101171
  • 财政年份:
    2024
  • 资助金额:
    $ 25.45万
  • 项目类别:
    Collaborative R&D
Syphilis point-of-care testing in prenatal care for marginalized urban populations: A feasibility implementation study
边缘化城市人口产前护理中的梅毒现场检测:可行性实施研究
  • 批准号:
    502557
  • 财政年份:
    2024
  • 资助金额:
    $ 25.45万
  • 项目类别:
Repurposing Sodium Cromoglycate For Lymphangioleiomyomatosis (LAM): An Open Label, Proof Of Concept And Feasibility Study
重新利用色甘酸钠治疗淋巴管平滑肌瘤病 (LAM):开放标签、概念验证和可行性研究
  • 批准号:
    MR/Y008618/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.45万
  • 项目类别:
    Research Grant
Adaptation and Feasibility assessment of a primary suicide prevention intervention for school adolescents in Nigeria
尼日利亚学校青少年初级自杀预防干预措施的适应性和可行性评估
  • 批准号:
    MR/Y01958X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.45万
  • 项目类别:
    Research Grant
Technical feasibility study for the detection of target biomarkers in menstrual blood for the diagnosis of polycystic ovary syndrome.
检测经血中目标生物标志物诊断多囊卵巢综合征的技术可行性研究。
  • 批准号:
    10100544
  • 财政年份:
    2024
  • 资助金额:
    $ 25.45万
  • 项目类别:
    Collaborative R&D
Researching the feasibility of enhancing the productivity of daffodil harvesting through the use of a daffodil collection robotic platform (Daffy)
研究利用水仙花采集机器人平台(Daffy)提高水仙花采收生产力的可行性
  • 批准号:
    10107691
  • 财政年份:
    2024
  • 资助金额:
    $ 25.45万
  • 项目类别:
    Launchpad
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了