Multilinear and Nonlinear Harmonic Analysis
多线性和非线性谐波分析
基本信息
- 批准号:0400879
- 负责人:
- 金额:$ 31.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTDMS: 0400879Ch Thiele'Multilinear and Nonlinear Harmonic Analysis':The scientific purpose of this project is to studythree interrelated subjects in harmonic analysis:1) Wave packet analysis. Initiated by the proof ofboundedness of the bilinear Hilbert transform, this typeof analysis has been studied intensely and has led toa series of results on multilinear operators and maximaloperators. 2) Arithmetic number theory, in particularthe study of arithmetic progressions, sum - and difference setsetc. The link between arithmetic number theory and thetype of analysis discussed above has recently be reinforcedbe several results on multilinear operators. Arithmetic numbertheory is also related to other problems in harmonic analysissuch as the famous Kakeya problem.3) Nonlinear Fourier analysis or scattering theory. Viamultilinear expansions of nonlinear operators in scatteringtheory, the latter is linked to multilinear operators.While the algebraic aspects of scattering theory in onedimension have been widely studied over the past thirty years,a number of basic analytic questions remain open and willbe studied in this project.Wave packet analysis is a discipline in mathematicsthat can readily be explained to anyone familiar withmusical scores. A musical score is the decoding of acomplicated musical composition into its most elementaryparts, the notes, each described by duration, pitch, and volume.Wave packet analysis is the mathematical analogue of this,which can be used to decode a large variety of mathematicaldata into its elementary pieces, each described by the analogue of duration, pitch,and volume. This type of analysis has had a tremendous impacton the way computers deal with large sets of data coming fromacoustic signals, images, radar, internet and other telecommunication,etc. This project studies basic mathematical questions associated to wave packet analysis, fundamental research that is likely toimprove our understanding not only of the types of processesdescribed above, but also of many different applications withinMathematics as well. This project will also help to maintain anactive research group in harmonic analysis at UCLA.
摘要DMS:0400879Ch Thiele“多线性和非线性谐波分析”:该项目的科学目的是研究谐波分析中三个相互关联的主题:1)波包分析。由双线性Hilbert变换有界性的证明开始,这类分析得到了广泛的研究,并在多线性算子和极大算子上得到了一系列结果。2)算术数论,特别是算术级数、和差集等的研究。算术数论和上面讨论的分析类型之间的联系最近被证明是关于多线性算子的几个结果。 算术数论也与调和分析中的其他问题有关,如著名的Kakeya问题。3)非线性傅立叶分析或散射理论。通过散射理论中非线性算子的多线性展开,后者与多线性算子相联系。虽然一维散射理论的代数方面在过去的三十年里得到了广泛的研究,但一些基本的分析问题仍然是开放的,将在本项目中进行研究。波包分析是一门数学学科,任何熟悉乐谱的人都可以很容易地解释它。乐谱是将复杂的音乐作品解码成最基本的部分,即音符,每个音符由持续时间、音高和音量来描述。波包分析是这一过程的数学模拟,它可以用来将大量的乐谱数据解码成基本的片段,每个片段由持续时间、音高和音量的模拟来描述。 这种类型的分析有一个巨大的影响,对计算机处理大量数据集的方式来自声信号,图像,雷达,互联网和其他电信等本项目研究基本的数学问题相关的波包分析,基础研究,这是可能提高我们的理解不仅类型的processesabove描述,但也有许多不同的应用在数学。这个项目也将有助于维持一个活跃的研究小组在谐波分析在加州大学洛杉矶分校。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christoph Thiele其他文献
increases hepatic retention of fatty acids
增加脂肪酸的肝脏保留
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
P. Luukkonen;A. Nick;M. Hölttä;Christoph Thiele;Elina Isokuortti;Susanna Lallukka;You Zhou;A. Hakkarainen;N. Lundbom;Markku Peltonen;M. Orho;M. Oreši;T. Hyötyläinen;Leanne Hodson;Elina Ikonen;Hannele Yki - 通讯作者:
Hannele Yki
Kupffer cell programming by maternal obesity triggers fatty liver disease
母体肥胖引起的库普弗细胞编程触发脂肪肝疾病
- DOI:
10.1038/s41586-025-09190-w - 发表时间:
2025-06-18 - 期刊:
- 影响因子:48.500
- 作者:
Hao Huang;Nora R. Balzer;Lea Seep;Iva Splichalova;Nelli Blank-Stein;Maria Francesca Viola;Eliana Franco Taveras;Kerim Acil;Diana Fink;Franzisca Petrovic;Nikola Makdissi;Seyhmus Bayar;Katharina Mauel;Carolin Radwaniak;Jelena Zurkovic;Amir H. Kayvanjoo;Klaus Wunderling;Malin Jessen;Mohamed H. Yaghmour;Lukas Kenner;Thomas Ulas;Stephan Grein;Joachim L. Schultze;Charlotte L. Scott;Martin Guilliams;Zhaoyuan Liu;Florent Ginhoux;Marc D. Beyer;Christoph Thiele;Felix Meissner;Jan Hasenauer;Dagmar Wachten;Elvira Mass - 通讯作者:
Elvira Mass
The interplay of DGAT2 and ACSL1
- DOI:
10.1016/j.chemphyslip.2010.05.164 - 发表时间:
2010-08-01 - 期刊:
- 影响因子:
- 作者:
Christine Mössinger;Anne Tuukkanen;Christoph Thiele - 通讯作者:
Christoph Thiele
Quantum signal processing and nonlinear Fourier analysis
量子信号处理和非线性傅立叶分析
- DOI:
10.1007/s13163-024-00494-5 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Michel Alexis;G. Mnatsakanyan;Christoph Thiele - 通讯作者:
Christoph Thiele
Weighted martingale multipliers in non-homogeneous setting and outer measure spaces
非均匀环境和外部测量空间中的加权鞅乘数
- DOI:
10.1016/j.aim.2015.08.019 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Christoph Thiele;S. Treil;A. Volberg - 通讯作者:
A. Volberg
Christoph Thiele的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christoph Thiele', 18)}}的其他基金
Time-frequency analysis in small dimensions
小维度时频分析
- 批准号:
1001535 - 财政年份:2010
- 资助金额:
$ 31.76万 - 项目类别:
Continuing Grant
Mathematical Models & Computational Algorithms for Image Processing, computer Vision & Computer Graphics
数学模型
- 批准号:
0914580 - 财政年份:2009
- 资助金额:
$ 31.76万 - 项目类别:
Continuing Grant
Carleson's Theorem in Analysis, Scattering, and Ergodic Theory
分析、散射和遍历理论中的卡尔森定理
- 批准号:
0701302 - 财政年份:2007
- 资助金额:
$ 31.76万 - 项目类别:
Continuing Grant
New Models and Fast Algorithms for Variational PDE Image Processing
变分偏微分方程图像处理的新模型和快速算法
- 批准号:
0610079 - 财政年份:2006
- 资助金额:
$ 31.76万 - 项目类别:
Standard Grant
Applied Inverse Problems Workshop 2005
应用反问题研讨会 2005
- 批准号:
0528366 - 财政年份:2005
- 资助金额:
$ 31.76万 - 项目类别:
Standard Grant
CAREER: Time-Frequency Analysis of Multilinear Operators and More General Nonlinear Operators
职业:多线性算子和更一般的非线性算子的时频分析
- 批准号:
9985572 - 财政年份:2000
- 资助金额:
$ 31.76万 - 项目类别:
Standard Grant
Time-Frequency Analysis and Multilinear Singular Integrals
时频分析和多重线性奇异积分
- 批准号:
9970469 - 财政年份:1999
- 资助金额:
$ 31.76万 - 项目类别:
Standard Grant
相似海外基金
Effect of nonlinear interaction between waves on abrupt bursts of emission in ultra high harmonic ion cyclotron frequency range
波间非线性相互作用对超高谐波离子回旋加速器频率范围内突然发射的影响
- 批准号:
23K03363 - 财政年份:2023
- 资助金额:
$ 31.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Lp-Convergence in Nonlinear Harmonic Analysis
非线性谐波分析中的 Lp 收敛
- 批准号:
562822-2021 - 财政年份:2021
- 资助金额:
$ 31.76万 - 项目类别:
University Undergraduate Student Research Awards
Nonlinear Harmonic Expansions
非线性谐波展开
- 批准号:
550847-2020 - 财政年份:2020
- 资助金额:
$ 31.76万 - 项目类别:
University Undergraduate Student Research Awards
Nonlinear harmonic analysis and dispersive partial differential equations
非线性调和分析和色散偏微分方程
- 批准号:
DP200101065 - 财政年份:2020
- 资助金额:
$ 31.76万 - 项目类别:
Discovery Projects
Applied Harmonic Analysis to Non-Convex Optimizations and Nonlinear Matrix Analysis
将调和分析应用于非凸优化和非线性矩阵分析
- 批准号:
1816608 - 财政年份:2018
- 资助金额:
$ 31.76万 - 项目类别:
Continuing Grant
Nonlinear Approximation in Geometric, Harmonic, and Anisotropic Settings with Applications
几何、谐波和各向异性设置中的非线性近似及其应用
- 批准号:
1714369 - 财政年份:2017
- 资助金额:
$ 31.76万 - 项目类别:
Standard Grant
Development of Advanced Control Methodologies for Harmonic Distortion Reduction in Nonlinear Acoustic Source
非线性声源谐波失真减少的先进控制方法的开发
- 批准号:
508629-2017 - 财政年份:2017
- 资助金额:
$ 31.76万 - 项目类别:
Engage Grants Program
Harmonic Analysis Challenges in Nonlinear Dispersive Partial Differential Equations
非线性色散偏微分方程中的调和分析挑战
- 批准号:
1500707 - 财政年份:2015
- 资助金额:
$ 31.76万 - 项目类别:
Continuing Grant
Analysis of standing waves for nonlinear Schroedinger equations with harmonic potential
具有谐波势的非线性薛定谔方程的驻波分析
- 批准号:
26800074 - 财政年份:2014
- 资助金额:
$ 31.76万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Steady-State Analysis of Nonlinear Circuits using the Harmonic Balance on Multi-GPU Architecture
在多 GPU 架构上使用谐波平衡进行非线性电路的稳态分析
- 批准号:
470238-2014 - 财政年份:2014
- 资助金额:
$ 31.76万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's