Conformal Structures and Rigidity Properties of Anosov and Partially Hyperbolic Systems
Anosov 和部分双曲系统的共形结构和刚度性质
基本信息
- 批准号:0401014
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-06-01 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTThe study of dynamical systems is a modern branch of mathematics which originated from physics, mechanics, and differential equations. Hyperbolic and partially hyperbolic systems have been one of the main objects of study in the area of smooth dynamics. The exponential contraction and expansion in these systems produces a chaotic behavior with complex and stable orbit structure. This results in a rich theory with applications in various areas of natural sciences and mathematics.The PI considers Anosov and partially hyperbolic systems whose contraction and expansion exhibit some conformality, i.e. distort shapes only moderately. In higher dimensions, this condition is essential for the study of regularity of the invariant foliations and smoothness of the conjugacy to a small perturbation or to an algebraic model. It may also yield remarkable rigidity not present in the low-dimensional case. The PI plans to investigate further the role of various types of conformality in the regularity properties. Another goal is to study rigidity under weaker or alternative assumptions such as smoothness of foliations and preservation of geometric structures.
动力系统的研究是数学的一个现代分支,它起源于物理学、力学和微分方程。双曲和部分双曲系统一直是光滑动力学领域的主要研究对象之一。这些系统的指数收缩和膨胀产生了具有复杂而稳定的轨道结构的混沌行为。这导致了丰富的理论与应用在自然科学和数学的各个领域。 Anosov和部分双曲系统的收缩和膨胀表现出一定的保形性,即扭曲的形状只有适度。在高维中,这个条件是必不可少的研究规律性的不变叶理和光滑的共轭小扰动或代数模型。 它也可以产生显著的刚性不存在于低维的情况下。PI计划进一步研究各种类型的保形性在正则性中的作用。另一个目标是在较弱或替代的假设下研究刚性,例如叶理的光滑性和几何结构的保留。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victoria Sadovskaya其他文献
Victoria Sadovskaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victoria Sadovskaya', 18)}}的其他基金
Non-Commutative Cocycles and Dynamics of Systems with Hyperbolic Behavior
非交换余循环和具有双曲行为的系统动力学
- 批准号:
1764216 - 财政年份:2018
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Cocycles over hyperbolic and partially hyperbolic systems
双曲和部分双曲系统上的余循环
- 批准号:
1301693 - 财政年份:2013
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
RUI: Invariant geometric structures and rigidity in hyperbolic dynamics.
RUI:双曲动力学中的不变几何结构和刚性。
- 批准号:
0901842 - 财政年份:2009
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
相似海外基金
Material and Geometrical Improvement on Structural Rigidity for Inflatable structures by using Micro-Capsule
使用微胶囊对充气结构的结构刚度进行材料和几何改进
- 批准号:
18K04554 - 财政年份:2018
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum structures and rigidity of lagrangian submanifolds
拉格朗日子流形的量子结构和刚性
- 批准号:
261277-2008 - 财政年份:2012
- 资助金额:
$ 6万 - 项目类别:
Discovery Grants Program - Individual
Quantum structures and rigidity of lagrangian submanifolds
拉格朗日子流形的量子结构和刚性
- 批准号:
261277-2008 - 财政年份:2011
- 资助金额:
$ 6万 - 项目类别:
Discovery Grants Program - Individual
Quantum structures and rigidity of lagrangian submanifolds
拉格朗日子流形的量子结构和刚性
- 批准号:
261277-2008 - 财政年份:2010
- 资助金额:
$ 6万 - 项目类别:
Discovery Grants Program - Individual
RUI: Invariant geometric structures and rigidity in hyperbolic dynamics.
RUI:双曲动力学中的不变几何结构和刚性。
- 批准号:
0901842 - 财政年份:2009
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Quantum structures and rigidity of lagrangian submanifolds
拉格朗日子流形的量子结构和刚性
- 批准号:
261277-2008 - 财政年份:2009
- 资助金额:
$ 6万 - 项目类别:
Discovery Grants Program - Individual
Teichmuller spaces of symmetric structures and the rigidity and fixed-point problems of quasiconformal mapping class groups
对称结构的Teichmuller空间与拟共形映射类群的刚性和不动点问题
- 批准号:
20340030 - 财政年份:2008
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)