Galois structure, Iwasawa theory and arithmetic geometry

伽罗瓦结构、岩泽理论和算术几何

基本信息

  • 批准号:
    0401319
  • 负责人:
  • 金额:
    $ 10.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-01 至 2008-07-31
  • 项目状态:
    已结题

项目摘要

The Principal Investigator will conduct research in two areas that willlead to new results in number theory and arithmetic geometry. Thefirst is concerned with several questions that are centerd aroundconjectures of Birch and Swinnerton-Dyer type. These questions involvearithmetic Galois module structure, Iwasawa theory and Arakelovtheory. The second topic deals with the study of relative Galoisstructure invariants using techniques from relative algebraicK-theory.The research described in this proposal lies in the field ofarithmetic algebraic geometry. This is a subject that blends two ofthe oldest branches of mathematics, namely number theory andgeometry. It has now blossomed to a point where it has resolvedproblems that have stood for centuries--the most famous recent exampleof this is the resolution of Fermat's Last Theorem by Andrew Wiles. Inaddition to its central importance within mathematics, this area hasfar-reaching concrete applications in fields as diverse as physics,robotics, data processing and information theory.
首席研究员将在两个领域进行研究,这将导致数论和算术几何的新成果。第一个是关于围绕Birch和Swinnerton-Dyer型结构的几个问题。这些问题涉及算术Galois模结构、Iwasawa理论和Arakelov理论。第二个主题是用相对代数K-理论的方法研究相对伽罗瓦结构不变量,本论文所述的研究属于算术代数几何领域。这是一门融合了两个最古老的数学分支,即数论和几何学的学科。它现在已经发展到解决了几个世纪以来的问题--最近最著名的例子是安德鲁·怀尔斯对费马大定理的解决。除了它在数学中的核心重要性,这一领域在物理学,机器人技术,数据处理和信息理论等领域有着深远的具体应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adebisi Agboola其他文献

Adebisi Agboola的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adebisi Agboola', 18)}}的其他基金

Arithmetic Geometry and Galois Module Theory
算术几何与伽罗瓦模理论
  • 批准号:
    0070449
  • 财政年份:
    2000
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
Iwasawa Theory and Arithmetic Geometry
岩泽理论与算术几何
  • 批准号:
    9700937
  • 财政年份:
    1997
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9107962
  • 财政年份:
    1991
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Fellowship Award

相似国自然基金

Rh-N4位点催化醇类氧化反应的微观机制与构效关系研究
  • 批准号:
    22302208
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
体内亚核小体图谱的绘制及其调控机制研究
  • 批准号:
    32000423
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
CTCF/cohesin介导的染色质高级结构调控DNA双链断裂修复的分子机制研究
  • 批准号:
    32000425
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
多层次纳米叠层块体复合材料的仿生设计、制备及宽温域增韧研究
  • 批准号:
    51973054
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
异染色质修饰通过调控三维基因组区室化影响机体应激反应的分子机制
  • 批准号:
    31970585
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
骨髓间充质干细胞成骨成脂分化过程中染色质三维构象改变与转录调控分子机制研究
  • 批准号:
    31960136
  • 批准年份:
    2019
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目
染色质三维结构等位效应的亲代传递研究
  • 批准号:
    31970586
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
染色质三维构象新型调控因子的机制研究
  • 批准号:
    31900431
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
转座因子调控多能干细胞染色质三维结构中的作用
  • 批准号:
    31970589
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
磷酸化和可变剪切修饰影响Bnip3调控线粒体自噬和细胞凋亡的结构及功能研究
  • 批准号:
    31670742
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

REU Site: Microbial Biofilm Development, Resistance, & Community Structure
REU 网站:微生物生物膜的发展、耐药性、
  • 批准号:
    2349311
  • 财政年份:
    2025
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
CAREER: Understanding Processing-Structure-Property Relationships in Co-Axial Wire-Feed, Powder-Feed Laser Directed Energy Deposition
职业:了解同轴送丝、送粉激光定向能量沉积中的加工-结构-性能关系
  • 批准号:
    2338951
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
Structure-guided optimisation of light-driven microalgae cell factories
光驱动微藻细胞工厂的结构引导优化
  • 批准号:
    DP240101727
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Discovery Projects
Structure-Focused Multi-task Learning Approach for structural pattern recognition and analysis
用于结构模式识别和分析的以结构为中心的多任务学习方法
  • 批准号:
    24K20789
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
  • 批准号:
    24H00582
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Structure, Dynamics and Activity of Bacterial Secretosome
细菌分泌体的结构、动力学和活性
  • 批准号:
    BB/Y004531/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Research Grant
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
  • 批准号:
    EP/Y027906/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Research Grant
Understanding the electronic structure landscape in wide band gap metal halide perovskites
了解宽带隙金属卤化物钙钛矿的电子结构景观
  • 批准号:
    EP/X039285/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了