Problems in Algorithmic and Combinatorial Number Theory
算法和组合数论中的问题
基本信息
- 批准号:0401422
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2007-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract: Problems in Algorithmic and Combinatorial Number TheoryCarl Pomerance DMS-0401422Perhaps the most fundamental problem in arithmetic is that of distinguishing prime numbers from composite numbers, and factoring composites into their prime factors. Recent stunning progress by Agrawal, Kayal, and Saxena on the prime recognition problem has led to a rejuvenation of the field. The Principal Investigator proposes to find provable variants of the AKS test that achieve its heuristic complexity, and do so with effectively computable tools in analytic number theory. In addition, the Principal Investigator proposes to study normal cycle lengths and the normal number of cycles of certain commonly used pseudorandom number generators. More theoretical problems include gaps between primes in a polynomial sequence, equations involving primitive roots, and the number of divisors of a multiplicative function. The Principal Investigator has plans to write a monograph on primality testing based on a graduate-level course he recently taught at Dartmouth College.Concerning broader impacts of the proposed research, the fields of cryptology and information security depend heavily on algorithmic number theory, and fundamental advances in the latter field are of intense interest in the former. In fact, the naturally conservative field of information security would perhaps prefer that there not be any more fundamental advances in algorithmic number theory. That they still can occur at this late date may cause the security field to rethink and broaden the underpinnings of their subject. The study of pseudorandom number generators has many applications to cryptology and numerical analysis. Surprisingly, we don't know the typical cycle length or the typical number of cycles for certain basic and commonly-used generators, a topic addressed by this proposal. The theoretical topics that will be considered deal with certain basic and natural questions connected with prime numbers, and some of these problems may well lead to practical applications. For example, primitive roots are also closely connected to the field of cryptology, and a deeper understanding of the possible relationships among them is of fundamental interest.
摘要:算术和组合数论中的问题卡尔·波美朗斯DMS-0401422也许算术中最基本的问题是区分素数和复合数,并将复合数分解成它们的素因数。最近,阿格拉瓦尔、卡亚尔和萨克塞纳在质数识别问题上取得了惊人的进展,这导致了这一领域的复兴。首席调查员建议寻找AKS测试的可证明变体,以达到其启发式复杂性,并使用解析数论中有效的可计算工具来做到这一点。此外,首席调查员还建议研究某些常用伪随机数生成器的正常周期长度和正常周期数。更多的理论问题包括多项式序列中素数之间的间隙,涉及原根的方程,以及乘法函数的除数。这位首席调查员计划在他最近在达特茅斯学院教授的一门研究生课程的基础上写一本关于素性测试的专著。考虑到拟议研究的更广泛影响,密码学和信息安全领域严重依赖算法数论,而后者的基本进展对前者非常感兴趣。事实上,天生保守的信息安全领域或许更希望算法数论不再有任何根本性的进步。它们仍然可能在这么晚的时候发生,这可能会导致安全领域重新思考并扩大其主题的基础。伪随机数发生器的研究在密码学和数值分析中有着广泛的应用。令人惊讶的是,我们不知道某些基本和常用发电机的典型周期长度或典型周期数,这是本提案讨论的一个问题。将被考虑的理论主题涉及与素数有关的某些基本和自然问题,其中一些问题很可能导致实际应用。例如,原根也与密码学领域密切相关,深入了解它们之间可能存在的关系具有根本的意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carl Pomerance其他文献
An inequality related to the sieve of Eratosthenes
- DOI:
10.1016/j.jnt.2023.07.005 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:
- 作者:
Kai Fan;Carl Pomerance - 通讯作者:
Carl Pomerance
On a nonintegrality conjecture
- DOI:
10.1007/s40879-021-00507-3 - 发表时间:
2021-10-12 - 期刊:
- 影响因子:0.500
- 作者:
Florian Luca;Carl Pomerance - 通讯作者:
Carl Pomerance
On the Distribution in Residue Classes of Integers with a Fixed Sum of Digits
- DOI:
10.1007/s11139-005-0824-6 - 发表时间:
2005-03-01 - 期刊:
- 影响因子:0.700
- 作者:
Christian Mauduit;Carl Pomerance;András Sárközy - 通讯作者:
András Sárközy
On Locally Repeated Values of Certain Arithmetic Functions, IV
- DOI:
10.1023/a:1009723712317 - 发表时间:
1997-01-01 - 期刊:
- 影响因子:0.700
- 作者:
Paul Erdös;Carl Pomerance;András Sárközy - 通讯作者:
András Sárközy
On primes and practical numbers
- DOI:
10.1007/s11139-020-00354-y - 发表时间:
2021-02-15 - 期刊:
- 影响因子:0.700
- 作者:
Carl Pomerance;Andreas Weingartner - 通讯作者:
Andreas Weingartner
Carl Pomerance的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carl Pomerance', 18)}}的其他基金
Topics in combinatorial and algorithmic number theory
组合和算法数论主题
- 批准号:
0703850 - 财政年份:2007
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Analytic and Algorithmic Number Theory
数学科学:解析和算法数论主题
- 批准号:
9206784 - 财政年份:1992
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Analytic and Algorithmic Number Theory
数学科学:解析和算法数论主题
- 批准号:
9002538 - 财政年份:1990
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Number Theory
数学科学:数论主题
- 批准号:
8803297 - 财政年份:1988
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
High Speed Factoring with the Quadratic Sieve Algorithm and a Pipeline Architecture
使用二次筛算法和管道架构进行高速分解
- 批准号:
8702941 - 财政年份:1987
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
High Speed Factoring with the Quadratic Sieve Algorithm and a Pipeline Architecture (Mathematical Sciences and Computer Research)
使用二次筛算法和管道架构进行高速因式分解(数学科学和计算机研究)
- 批准号:
8421341 - 财政年份:1985
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Mathematical and Computer Sciences: Computational and Multiplicative Number Theory
数学和计算机科学:计算和乘法数论
- 批准号:
8301487 - 财政年份:1983
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
相似海外基金
Algorithmic and combinatorial problems inspired by comparative genomics.
受比较基因组学启发的算法和组合问题。
- 批准号:
RGPIN-2016-04576 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic and combinatorial problems inspired by comparative genomics.
受比较基因组学启发的算法和组合问题。
- 批准号:
RGPIN-2016-04576 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic and combinatorial problems inspired by comparative genomics.
受比较基因组学启发的算法和组合问题。
- 批准号:
RGPIN-2016-04576 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic and combinatorial problems inspired by comparative genomics.
受比较基因组学启发的算法和组合问题。
- 批准号:
RGPIN-2016-04576 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic and combinatorial problems inspired by comparative genomics.
受比较基因组学启发的算法和组合问题。
- 批准号:
RGPIN-2016-04576 - 财政年份:2017
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic and combinatorial problems inspired by comparative genomics.
受比较基因组学启发的算法和组合问题。
- 批准号:
RGPIN-2016-04576 - 财政年份:2016
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic and combinatorial studies inspired by problems of comparative genomics
受比较基因组学问题启发的算法和组合研究
- 批准号:
262965-2011 - 财政年份:2015
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic and combinatorial studies inspired by problems of comparative genomics
受比较基因组学问题启发的算法和组合研究
- 批准号:
262965-2011 - 财政年份:2014
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic and combinatorial studies inspired by problems of comparative genomics
受比较基因组学问题启发的算法和组合研究
- 批准号:
262965-2011 - 财政年份:2013
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic and combinatorial studies inspired by problems of comparative genomics
受比较基因组学问题启发的算法和组合研究
- 批准号:
262965-2011 - 财政年份:2012
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual