Orbifold Conformal Field Theory and Algebraic Geometry

轨道共形场论和代数几何

基本信息

  • 批准号:
    0401619
  • 负责人:
  • 金额:
    $ 9.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2006-01-31
  • 项目状态:
    已结题

项目摘要

DMS-0401619Matthew M. SzczesnyThe principal investigator proposes four projects relating conformal field theory, vertex algebras, and algebraic geometry. The first one concerns orbifolds of the chiral de Rham complex and their relation to Chen-Ruan's orbifold cohomology. More precisely, the PI proposes to understand the product structure on orbifold cohomology in terms of the orbifold chiral de Rham complex. The second (with E. Frenkel and R. Donagi) relates spaces of twisted conformal blocks and D-modules on generalized Prym varieties. The third project involves the construction and study of sheaves of orbifold conformal blocks over the stack of pointed G--covers. The objective here is to obtain an orbifold CFT generalization of the KZ equations. Finally, the last project (with L. Borisov) is concerned with a non-chiral generalization of the chiral de Rham complex. The aim is to construct, for each Calabi-Yau manifold M, a sheaf of non-chiral vertex algebras in the sense of Kapustin-Orlov, which computes the (2,2)-sigma model with target M. This construction should have complexified Kahler dependence.The purpose of these projects is to apply ideas in conformal field theory (CFT) ( a type of quantum field theory) to algebraic geometry. This has already been done successfully in the case of ordinary conformal field theories, leading to a large number of beautiful results. Most of the above projects are concerned with so called orbifold models, which arise when the CFT has additional discrete symmetries. In this case, the connections with algebraic geometry have not been fully explored, and the PI wants to extend some of the geometric results already known in the case of ordinary CFT's to the orbifold setting. The last of the projects proposed above focuses on rigorously defining and constructing an important quantum field theory, called the sigma model. So far, only a partial construction of "half" the theory exists.
主要研究人员提出了四个项目,涉及共形场理论、顶点代数和代数几何。第一个问题是关于手性de Rham络合物的上同调结构及其与Chen-Ruan上同调关系的关系。更准确地说,PI建议通过Orbiold手性De Rham络合物来理解Orbiold上同调的产物结构。第二部分(与E.Frenkel和R.Donagi)讨论了广义Prym簇上的扭曲共形块空间和D-模。第三个项目涉及在尖点G-覆盖的堆叠上构造和研究奥布里奥德共形块层。这里的目的是得到KZ方程的一个或多个CFT推广。最后,最后一个项目(与L·鲍里索夫)涉及手性德罗姆络合物的非手性推广。其目的是为每个Calabi-Yau流形M构造一个Kapustin-Orlov意义下的非手性顶点代数,它计算与目标M有关的(2,2)-sigma模型。这个构造应该具有复杂的Kahler依赖。这些项目的目的是将共形场论(CFT)的思想应用到代数几何中。这已经在普通的保形场理论的情况下成功地完成了,导致了大量美丽的结果。大多数上述项目都涉及所谓的奥比福尔德模型,即当CFT具有额外的离散对称性时出现的模型。在这种情况下,与代数几何的联系还没有得到充分的探索,PI想要将在普通CFT的情况下已知的一些几何结果推广到OBORBORLD设置。上面提出的最后一个项目集中于严格定义和构建一个重要的量子场论,称为西格玛模型。到目前为止,这一理论只存在“一半”的部分构建。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Szczesny其他文献

Matthew Szczesny的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Szczesny', 18)}}的其他基金

Orbifold Conformal Field Theory and Algebraic Geometry
轨道共形场论和代数几何
  • 批准号:
    0606761
  • 财政年份:
    2005
  • 资助金额:
    $ 9.65万
  • 项目类别:
    Standard Grant

相似海外基金

Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.65万
  • 项目类别:
    Research Grant
Research on induced twisted representations in conformal field theory with tensor category theory
张量范畴论共形场论中诱导扭曲表示的研究
  • 批准号:
    23KJ0540
  • 财政年份:
    2023
  • 资助金额:
    $ 9.65万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
NSF-BSF: New Approaches to Conformal Field Theory - Codes, Ensembles, and Complexity
NSF-BSF:共形场论的新方法 - 代码、系综和复杂性
  • 批准号:
    2310426
  • 财政年份:
    2023
  • 资助金额:
    $ 9.65万
  • 项目类别:
    Continuing Grant
Conformal Field Theories with Higher Spin Symmetry and Duality Invariance
具有更高自旋对称性和对偶不变性的共形场论
  • 批准号:
    DP230101629
  • 财政年份:
    2023
  • 资助金额:
    $ 9.65万
  • 项目类别:
    Discovery Projects
Geometric scattering methods for the conformal Einstein field equations
共形爱因斯坦场方程的几何散射方法
  • 批准号:
    EP/X012417/1
  • 财政年份:
    2023
  • 资助金额:
    $ 9.65万
  • 项目类别:
    Research Grant
Turning up the Temperature in Conformal Field Theory
提高共形场论中的温度
  • 批准号:
    567953-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 9.65万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Ensemble Averaging and the Anti-de Sitter/Conformal Field Theory Correspondence
系综平均和反德西特/共形场论对应
  • 批准号:
    575727-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 9.65万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Holography, Black Holes, and Conformal Field Theory
全息术、黑洞和共形场论
  • 批准号:
    SAPIN-2020-00047
  • 财政年份:
    2022
  • 资助金额:
    $ 9.65万
  • 项目类别:
    Subatomic Physics Envelope - Individual
The mathematics of conformal field theory: a unified approach
共形场论的数学:统一方法
  • 批准号:
    RGPIN-2022-04104
  • 财政年份:
    2022
  • 资助金额:
    $ 9.65万
  • 项目类别:
    Discovery Grants Program - Individual
On Conformal Field Theory and Dark Matter
论共形场论和暗物质
  • 批准号:
    SAPIN-2020-00038
  • 财政年份:
    2022
  • 资助金额:
    $ 9.65万
  • 项目类别:
    Subatomic Physics Envelope - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了