NER: Using Surface Interactions and Continuum Models to Develop New Modes of Nano-Device Operation

NER:利用表面相互作用和连续体模型开发纳米器件操作的新模式

基本信息

项目摘要

Four exploratory nano-scale devices that take advantage of surface interactions are highlighted in this proposal. The first uses lattice registry to make nano-devices featuring tunable rotary and translational motion. The others use the bistability (tube/ribbon) of nanotubes caused by surface adhesion and atomic-scale registry to develop nano-pumps, vices, switches, and interconnected networks with unique mechanical properties. To determine the feasibility of these devices, new multi-scale modeling techniques must be developed. These models must incorporate the important physics at every level from quantum mechanical to structural. The combined areas of expertise of the PIs covers this full range, allowing them to carefully decide what physics must be included and what can be neglected at each scale. Dr. Crespi's newly developed potential for atomic-scale registry and surface interaction will be integrated into the nonlinear structural theories developed by Dr. Mockensturm using so-called Cosserat continuum mechanics. Theoretical studies of these devices which are difficult and computationally expensive using molecular dynamics become feasible using continuum models. Regardless of the ultimate success of these speculative devices, the new modeling techniques developed will provide a foundation for further device discovery.As sizes decrease to the atomic scale, surface interactions take on a more important role, to the point where they can induce novel and macroscopically peculiar behaviors. At the ultimate limit of a nanostructure, it is possible for essentially every atom to be at the surface, particularly in carbon-based nanostructures which can have a two dimensional crystalline structure (graphite, not diamond). Long-range surface interactions are, thus, a fundamental mechanism in nano-scale devices that are rarely important in the macroscopic world and typically ignored. At the nano-scale, van der Waals' interactions make devices behave as if they are coated with a thick layer of molasses. These surface interactions allow carbon nanotubes to have two stable states. The most commonly seen state is tubular. However, a so-called nano-ribbon is just another stable (collapsed) state of nanotubes. In this research the investigators will use this bi-stable behavior to develop new modes of nano-device operation. Specifically, the feasibility of nano-pumps, vices, switches, and interconnected networks with unique mechanical properties will be studied.
在这项提案中,重点介绍了四种利用表面相互作用的探索性纳米设备。第一种是利用晶格定位来制造具有可调旋转和平移运动的纳米器件。另一类是利用纳米管的双稳态(管/带),利用表面附着和原子尺度的配准来开发具有独特机械性能的纳米泵、虎钳、开关和互连网络。为了确定这些装置的可行性,必须开发新的多尺度建模技术。这些模型必须包含从量子力学到结构的各个层面的重要物理知识。PIS的综合专业领域涵盖了这一范围,使他们能够仔细决定哪些物理必须包括,哪些可以在每个尺度上忽略。克雷斯皮博士新开发的原子尺度注册和表面相互作用的潜力将被整合到莫肯斯图姆博士利用所谓的Cosserat连续介质力学开发的非线性结构理论中。使用分子动力学对这些装置进行理论研究是困难和昂贵的,但使用连续介质模型是可行的。不管这些推测设备的最终成功与否,新开发的建模技术将为进一步发现设备提供基础。随着尺寸减小到原子规模,表面相互作用扮演着更重要的角色,以至于它们可以诱导出新颖的宏观特殊行为。在纳米结构的极限下,几乎每个原子都有可能在表面,特别是在碳基纳米结构中,它可以具有二维晶体结构(石墨,而不是钻石)。因此,长程表面相互作用是纳米器件中的一个基本机制,在宏观世界中很少是重要的,通常被忽视。在纳米尺度上,范德华的相互作用使设备的行为就像它们被厚厚的一层糖蜜覆盖一样。这些表面相互作用使碳纳米管具有两种稳定状态。最常见的状态是管状。然而,所谓的纳米带只是纳米管的另一种稳定(坍塌)状态。在这项研究中,研究人员将利用这种双稳态行为来开发纳米设备操作的新模式。具体地说,将研究具有独特机械性能的纳米泵、虎钳、开关和互联网络的可行性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Mockensturm其他文献

Van Der Waal’s Elastica
范德瓦尔的弹性纤维
  • DOI:
    10.1115/imece2005-82991
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric Mockensturm;Arash Mahdavi
  • 通讯作者:
    Arash Mahdavi

Eric Mockensturm的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Mockensturm', 18)}}的其他基金

Using and Extending Two Newly Developed Multi-scale Modeling Methods to Study Novel Nano-Device Operation
使用和扩展两种新开发的多尺度建模方法来研究新型纳米器件操作
  • 批准号:
    0727890
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: The Mechanics of Web Handling
职业:纸幅处理的机制
  • 批准号:
    0134064
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

Oxidation Pathways and Radicals at the Gas-Particle Interface Using Surface-Sensitive Techniques
使用表面敏感技术研究气体-颗粒界面处的氧化途径和自由基
  • 批准号:
    2331523
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
  • 批准号:
    2319535
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Understanding surface-to-bed meltwater pathways across the Greenland Ice Sheet using machine-learning and physics-based models
合作研究:NSFGEO-NERC:使用机器学习和基于物理的模型了解格陵兰冰盖的地表到床层融水路径
  • 批准号:
    2235052
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Advancement in prediction of hydrodynamic characteristics under the free-surface and discharge evaluation by using the turbulence information measured by live camera images
利用实时相机图像测量的湍流信息预测自由表面下的水动力特性和流量评估的进展
  • 批准号:
    23K04043
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Surface modification of ceramic phosphor using hydrophobic interaction and effect on emission efficiency
利用疏水相互作用对陶瓷荧光粉进行表面改性及其对发射效率的影响
  • 批准号:
    23K04406
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Energy interface engineering for self-sustaining solar thermal distillation system: Enhancement of atmospheric cooling using microstructured surface layers
自持太阳能热蒸馏系统的能量界面工程:利用微结构表面层增强大气冷却
  • 批准号:
    23K04652
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Innovative Method for Estimating Flood Flows and Riverbed Topography from Water Surface Video Images Using the Vortex and Wave Principle
利用涡波原理从水面视频图像估算洪水流量和河床地形的创新方法
  • 批准号:
    23K17776
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Elucidation of surface proton hopping conduction mechanism using neutron quasi-elastic scattering measurements
使用中子准弹性散射测量阐明表面质子跳跃传导机制
  • 批准号:
    23K17937
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Simplified Evaluation for Nonlinear Amplification Characteristics of Surface Layer Using Engineering Geomorphologic Classification
利用工程地貌分类简化地表层非线性放大特性评价
  • 批准号:
    23K04003
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New development of complex analysis in several variables using moduli and closings of an open Riemann surface
使用开放黎曼曲面的模数和闭包进行多变量复分析的新发展
  • 批准号:
    23K03140
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了