Controlled Surgery
控制手术
基本信息
- 批准号:0404848
- 负责人:
- 金额:$ 7.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2006-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal concerns two topics in controlled surgery. The first is a homotoy-theoretic approach to controlled surgery on Poincare spaces of dimension 4 and greater. This provides input for a limit construction of homology manifolds. The principal new conclusion would be construction of exotic homology manifolds in dimension 4 (the Bryant-Ferry-Mio-Weinberger construction works in 6 and above) and, via a known resolution theorem, a proof of the 4-dimensional topological surgery conjecture. The second topic is a variation on surgery groups making use of controlled K-theory. This should have better formal properties, for instance should more often satisfy the Farrell-Jones isomorphism conjecture.This proposal concerns controlled surgery on Poincare spaces. Poincare spaces have global homological duality similar to that of manifolds. Given a map to a metric space one can measure the "size" of the duality structure: how far one must go to find dual cycles. Manifolds have duality with size 0 because duality follows from the local structure. Poincare spaces generally have no constraints, so the size is the diameter of the control space. The key part of the proposal is a size-reducing process: given a Poincare space with duality of size epsilon, find an equivalent Poincare space with much smaller size control. The approach proposed should work for spaces of dimension 4 and above. In this case it would provide input to an elaborate but already established argument to give a proof of the 4-dimensional topological surgery conjecture. This conjecture is the major unresolved problem in topology in dimension 4.
这一建议涉及两个主题的控制手术。第一个是同伦理论的方法来控制手术的庞加莱空间的4维及以上。这为同调流形的极限构造提供了输入。主要的新结论将是在4维中构造奇异的同调流形(Bryant-Ferry-Mio-Weinberger构造在6维及以上),并通过已知的分解定理证明了4维拓扑手术猜想。第二个主题是利用受控K理论的手术组的变化。这应该具有更好的形式属性,例如应该更经常地满足法雷尔-琼斯同构猜想。该提议涉及庞加莱空间上的受控手术。庞加莱空间具有与流形相似的全局同调对偶。给定一个到度量空间的映射,我们可以测量对偶结构的“大小”:我们必须走多远才能找到对偶圈。流形具有尺寸为0的对偶性,因为对偶性来自局部结构。庞加莱空间一般没有约束,所以尺寸是控制空间的直径。该方案的关键部分是一个尺寸缩减过程:给定一个具有尺寸为λ的对偶的庞加莱空间,找到一个具有小得多的尺寸控制的等价庞加莱空间。所提议的办法应适用于4维及以上的空间。在这种情况下,它将为一个精心设计但已经建立的论点提供输入,以证明四维拓扑手术猜想。这个猜想是主要的未解决的问题,在拓扑4维。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frank Quinn其他文献
Roadkill on the electronic highway? The threat to the mathematical literature
- DOI:
10.1007/bf02680423 - 发表时间:
1995-06-01 - 期刊:
- 影响因子:1.700
- 作者:
Frank Quinn - 通讯作者:
Frank Quinn
Frank Quinn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frank Quinn', 18)}}的其他基金
Evaluation and Dissemination of Task-oriented Math Courseware
任务型数学课件的评价与传播
- 批准号:
0936249 - 财政年份:2009
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
Controlled Topology and Topological Field Theory
受控拓扑和拓扑场论
- 批准号:
9705168 - 财政年份:1997
- 资助金额:
$ 7.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Conference on Prospects in Topology
数学科学:拓扑学展望会议
- 批准号:
9315757 - 财政年份:1994
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Studies in Geometric Topology
数学科学:几何拓扑研究
- 批准号:
9207973 - 财政年份:1992
- 资助金额:
$ 7.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: NSF-CBMS Regional Conference on GroupActions on Manifolds, July 13-17, 1987
数学科学:NSF-CBMS 流形集体行动区域会议,1987 年 7 月 13-17 日
- 批准号:
8620063 - 财政年份:1987
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Topology and k-Theory
数学科学:几何拓扑和 k 理论
- 批准号:
8601372 - 财政年份:1986
- 资助金额:
$ 7.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: 4-Manifolds and Algebraic K-theory
数学科学:4-流形和代数 K 理论
- 批准号:
8201621 - 财政年份:1982
- 资助金额:
$ 7.2万 - 项目类别:
Standard Grant
相似海外基金
Bariatric surgery for the Reduction of cArdioVascular Events randomized controlled (BRAVE) trial: vanguard phase for assessment of feasibility
减肥手术减少心血管事件随机对照 (BRAVE) 试验:可行性评估的先锋阶段
- 批准号:
479715 - 财政年份:2023
- 资助金额:
$ 7.2万 - 项目类别:
Operating Grants
Comparative effectiveness of opioid versus opioid-free post-discharge analgesia after outpatient breast surgery: A randomized controlled trial
门诊乳房手术后阿片类药物与不含阿片类药物的出院后镇痛效果比较:一项随机对照试验
- 批准号:
479038 - 财政年份:2023
- 资助金额:
$ 7.2万 - 项目类别:
Operating Grants
Prophylactic Antibiotic Regimens In Tumor Surgery (PARITY) International Randomized Controlled Trial: Evidence Dissemination from a Large International Prospective Dataset
肿瘤手术中的预防性抗生素治疗方案 (PARITY) 国际随机对照试验:来自大型国际前瞻性数据集的证据传播
- 批准号:
460959 - 财政年份:2022
- 资助金额:
$ 7.2万 - 项目类别:
Miscellaneous Programs
Memory Specificity Training to Prevent Chronic Pain after Major Surgery: A Randomized Controlled Trial
记忆特异性训练可预防大手术后慢性疼痛:一项随机对照试验
- 批准号:
474545 - 财政年份:2022
- 资助金额:
$ 7.2万 - 项目类别:
Studentship Programs
Comparative effectiveness of opioid versus opioid-free post-discharge analgesia after outpatient breast surgery: A randomized controlled trial
门诊乳房手术后阿片类药物与不含阿片类药物的出院后镇痛效果比较:一项随机对照试验
- 批准号:
472219 - 财政年份:2022
- 资助金额:
$ 7.2万 - 项目类别:
Operating Grants
DRAGON 2 - An international multicenter randomized controlled trial to compare combined Portal and Hepatic Vein Embolization (PVE/HVE) with PVE alone in liver surgery
DRAGON 2 - 一项国际多中心随机对照试验,比较肝脏手术中联合门静脉和肝静脉栓塞术 (PVE/HVE) 与单独 PVE 的效果
- 批准号:
463216 - 财政年份:2022
- 资助金额:
$ 7.2万 - 项目类别:
Operating Grants
Safety and quality of life of peri-operative transdermal estradiol continuation during gender affirmation surgery in transgender women: a randomised placebo-controlled trial
变性女性性别肯定手术期间继续使用围手术期经皮雌二醇的安全性和生活质量:一项随机安慰剂对照试验
- 批准号:
nhmrc : 2003939 - 财政年份:2021
- 资助金额:
$ 7.2万 - 项目类别:
Postgraduate Scholarships
High-exchange ULTrafiltration to enhance Recovery After pediatric cardiac surgery (ULTRA): A Randomized Controlled Trial
高交换超滤促进小儿心脏手术 (ULTRA) 后的恢复:随机对照试验
- 批准号:
458647 - 财政年份:2021
- 资助金额:
$ 7.2万 - 项目类别:
Studentship Programs
Telephone-Based Cognitive Behavioural Therapy for Post-Operative Bariatric Surgery Patients to Manage COVID-19 Pandemic Related Mental Health and Distress (TELE-BARICARE): A Randomized Controlled Trial to Determine Effectiveness and Adaptation for Margina
针对减肥手术后患者的基于电话的认知行为疗法,以管理与 COVID-19 大流行相关的心理健康和困扰 (TELE-BARICARE):一项随机对照试验,以确定 Margina 的有效性和适应性
- 批准号:
460324 - 财政年份:2021
- 资助金额:
$ 7.2万 - 项目类别:
Operating Grants
Surveillance AFter Extremity Tumor surgerY (SAFETY) International Randomized Controlled Trial
肢体肿瘤手术后的监测(安全)国际随机对照试验
- 批准号:
443062 - 财政年份:2020
- 资助金额:
$ 7.2万 - 项目类别:
Operating Grants