Time Series Analysis and Applications
时间序列分析与应用
基本信息
- 批准号:0405038
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The focus of this research is on a number of topics relating to applications of time series analysis. The motivation for the first project is the analysis of DNA sequences. One important task is to translate the information stored in the protein-coding sequences (CDS) of the DNA. A common problem in analyzing long DNA sequence data is in identifying CDS that are dispersed throughout the sequence and separated by regions of noncoding. It is well known that DNA sequences are heterogeneous, and even within short subsequences of DNA, one encounters local behavior. In this proposal, the interest is in extending the spectral envelope methodology to capture the local behavior of such sequences. To address this problem of local behavior in categorical-valued time series, local spectral envelope with estimation via mixtures of smoothing splines will be explored. It is the hope that this methodology will help emphasize any periodic feature that exists in a categorical sequence of virtually any length in a quick and automated fashion. Projects such as the human genome project have produced large amounts of data. It is believed the methods will prove to be useful in the analysis of the vast quantities of data being produced by various genome projects. Another primary objective of this proposal is to explore spatio-temporal modeling by developing models similar to the STARMAX model. The goal is to develop a general methodology, but the research will be governed by obtaining solutions to difficult problems in biosurveillance, such as monitoring bioterrorism, and in medicine, such as the analysis of concurrent EEG-fMRI recordings. Although data is being collected in real-time by various organizations such as the CDC, data analytic tools that support both temporal and spatial data analysis and visualization are sorely lacking. At the present time, most analysis is accomplished by dropping (either by ignoring or by aggregating) either time or space. EEG has been a key tool in the study of the brain for decades. However, despite its multiple clinical and research uses, such as in epilepsy, little is yet known about the underlying generators of EEG activity in humans. Functional MRI (fMRI) recorded in concert with EEG may provide a method for localizing and identifying these sources. By using the EEG signal as a reference for fMRI maps, concurrent EEG-fMRI opens a new avenue for investigating specific brain function. The focus of this research is on a number of topics relating to applications of data collected in time, in space, or in sequence. The motivation for the first project is the analysis of DNA sequences. One important task is to translate the information stored in the protein-coding sequences of the DNA. Projects such as the human genome project have produced large amounts of data. It is believed the methods will prove to be useful in the analysis of the vast quantities of data being produced by various genome projects. Another primary objective of this proposal is to explore spatio-temporal modeling by developing new statistical models. The goal is to develop a general methodology, but the research will be governed by obtaining solutions to difficult problems in biosurveillance, such as monitoring bioterrorism, and in medicine, such as the analysis of concurrent EEG-fMRI recordings. Although data is being collected in real-time by various organizations such as the CDC, data analytic tools that support both temporal and spatial data analysis and visualization are sorely lacking. At the present time, most analysis is accomplished by dropping (either by ignoring or by aggregating) either time or space. EEG has been a key tool in the study of the brain for decades. However, despite its multiple clinical and research uses, such as in epilepsy, little is yet known about the underlying generators of EEG activity in humans. Functional MRI (fMRI) recorded in concert with EEG may provide a method for localizing and identifying these sources. By using the EEG signal as a reference for fMRI maps, concurrent EEG-fMRI opens a new avenue for investigating specific brain function.
本研究的重点是一些与时间序列分析应用相关的主题。 第一个项目的动机是DNA序列的分析。 其中一个重要的任务是翻译存储在DNA的蛋白质编码序列(CDS)中的信息。 分析长DNA序列数据的一个常见问题是识别分散在整个序列中并由非编码区域分隔的CDS。 众所周知,DNA序列是异质的,即使在DNA的短序列中,也会遇到局部行为。 在这个建议中,兴趣是在扩展的频谱包络的方法来捕捉这种序列的本地行为。 为了解决这个问题的局部行为的分类值时间序列,局部谱包络估计通过混合平滑样条将被探讨。 我们希望这种方法将有助于以快速和自动化的方式强调存在于几乎任何长度的分类序列中的任何周期性特征。 像人类基因组计划这样的项目已经产生了大量的数据。 据信,这些方法将被证明是有用的,在分析大量的数据正在产生的各种基因组计划。 该提案的另一个主要目标是通过开发类似于STARMAX模型的模型来探索时空建模。 目标是开发一种通用的方法,但研究将通过获得生物监视中困难问题的解决方案来管理,例如监测生物恐怖主义,以及医学中的困难问题,例如分析并发的EEG-fMRI记录。 虽然CDC等各种组织正在实时收集数据,但支持时间和空间数据分析和可视化的数据分析工具非常缺乏。 目前,大多数分析都是通过丢弃(通过忽略或聚合)时间或空间来完成的。 几十年来,EEG一直是研究大脑的关键工具。 然而,尽管它有多种临床和研究用途,如癫痫,但对人类EEG活动的潜在发生器知之甚少。 功能性磁共振成像(fMRI)与脑电图记录一致,可以提供一种定位和识别这些来源的方法。 通过使用EEG信号作为fMRI图的参考,同步EEG-fMRI为研究特定的脑功能开辟了新的途径。 这项研究的重点是在时间,空间或顺序收集的数据的应用程序有关的一些主题。 第一个项目的动机是DNA序列的分析。 一项重要的任务是翻译存储在DNA蛋白质编码序列中的信息。 像人类基因组计划这样的项目已经产生了大量的数据。 据信,这些方法将被证明是有用的,在分析大量的数据正在产生的各种基因组计划。 该提案的另一个主要目标是通过开发新的统计模型来探索时空建模。 目标是开发一种通用的方法,但研究将通过获得生物监视中困难问题的解决方案来管理,例如监测生物恐怖主义,以及医学中的困难问题,例如分析并发的EEG-fMRI记录。 虽然CDC等各种组织正在实时收集数据,但支持时间和空间数据分析和可视化的数据分析工具非常缺乏。 目前,大多数分析都是通过丢弃(通过忽略或聚合)时间或空间来完成的。 几十年来,EEG一直是研究大脑的关键工具。 然而,尽管它有多种临床和研究用途,如癫痫,但对人类EEG活动的潜在发生器知之甚少。 功能性磁共振成像(fMRI)与脑电图记录一致,可以提供一种定位和识别这些来源的方法。 通过使用EEG信号作为fMRI图的参考,同步EEG-fMRI为研究特定的脑功能开辟了新的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Stoffer其他文献
David Stoffer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Stoffer', 18)}}的其他基金
Nonlinear and Nonstationary Time Series
非线性和非平稳时间序列
- 批准号:
1506882 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: The Analysis of Time Series Collected in Experimental Designs
协作研究:实验设计中收集的时间序列分析
- 批准号:
0706723 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Walsh-Fourier Analysis and Categorical Time Series
数学科学:沃尔什-傅里叶分析和分类时间序列
- 批准号:
9000522 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
删失数据非线性分位数回归模型的series估计及其实证分析中的应用
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Complexity of couplings in multivariate time series via a marriage of ordinal pattern analysis with topological data analysis
通过序数模式分析与拓扑数据分析的结合研究多元时间序列中耦合的复杂性
- 批准号:
23K03219 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Optimized frequency-domain analysis for astronomical time series
合作研究:天文时间序列的优化频域分析
- 批准号:
2307979 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: RI: TRUST—TRustworthy Uncertainty Propagation for Sequential Time-Series Analysis
CRII:RI:TRUST – 用于顺序时间序列分析的值得信赖的不确定性传播
- 批准号:
2401828 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Outcomes After Emergency Department Visits for Dyspnea: Population-Based Interrupted Time-Series Analysis of Implementation of B-Type Natriuretic Peptide Assays
因呼吸困难而急诊就诊后的结果:实施 B 型利尿钠肽测定的基于人群的间断时间序列分析
- 批准号:
493119 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Mapping the active universe with time series analysis of huge dataset based on wide field optical surveys
基于广域光学巡天的海量数据集时间序列分析绘制活跃宇宙图
- 批准号:
23H01217 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Linking 3He/4He with eruptive behavior: A time series analysis of recent Kilauea, Iceland, and La Palma eruptions
合作研究:将 3He/4He 与喷发行为联系起来:对近期基拉韦厄火山、冰岛火山和拉帕尔马火山喷发的时间序列分析
- 批准号:
2232532 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Optimized frequency-domain analysis for astronomical time series
合作研究:天文时间序列的优化频域分析
- 批准号:
2307978 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Exposure to Low Dose Ionizing Radiation In Adult Patients with Congenital Heart Disease - A Time Series Analysis Assessing the Past and Projecting the Future
成年先天性心脏病患者接触低剂量电离辐射 - 评估过去和预测未来的时间序列分析
- 批准号:
479720 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Collaborative Research: Linking 3He/4He with eruptive behavior: A time series analysis of recent Kilauea, Iceland, and La Palma eruptions
合作研究:将 3He/4He 与喷发行为联系起来:对近期基拉韦厄火山、冰岛火山和拉帕尔马火山喷发的时间序列分析
- 批准号:
2232531 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Sparse factor analysis in high-dimensional time series and its application to energy science
高维时间序列稀疏因子分析及其在能源科学中的应用
- 批准号:
23K11007 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)