Regularity questions in the geometric calculus of variations and in geometric flow problems

几何变分法和几何流问题中的正则性问题

基本信息

  • 批准号:
    0406209
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-01 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

Proposal DMS-0406209 Abstract ``Regularity questions in the geometric calculus of variationsand in geometric flow problems'' (Leon Simon and Brian White) Leon Simon plans to pursue various questions related to the structureof the singular sets of minimal submanifolds and energy minimizingmaps. More specifically Simon aims to establish first orderregularity (i.e. that the singular set lies in a locally finite unionof continuously differentiable submanifolds) for various multiplicity1 classes near points where there is a tangent cylinder with across-section which admits a calibration. Such a result would inparticular apply to mod-2 minimizers near ``top-dimensional'' singularpoints. Brian White plans to study regularity properties of meancurvature flow, including non-uniqueness properties and ``fattening.''In addition he will continue his work on the singular structure ofminimizing cones with coefficients in a metric group, and his work on2 dimensional minimal surfaces with particular emphasis on the studyof branch points. An understanding of singularities, and how singularities are formed,is a fundamental element in our overall understanding of many physicaland geometric phenomena. For example, in cosmology singularities ofspace-time (e.g. ``black holes'') play a fundamental role, and theunderstanding of singularity formation in geometric flow problems is akey ingredient in the approach of Hamilton, Perelman and others toThurston's Geometrization Conjecture. Likewise in the study of the``canonical'' objects which arise naturally in topology and geometry,singularities arise in a very natural and unavoidable manner, and theunderstanding of these singularities is an absolutely fundamentalproblem. As with most non-linear phenomena, there is not a singlegeneral theory which applies in a wide range of different contexts.Rather, each different context has its own collection of effectivetechniques, and it is the development and application of suchtechniques in the context of the geometric calculus of variationswhich is the focus of the present research proposal. Specifically,Simon and White propose to continue their efforts toward a morecomplete understanding of singularities, and how they are formed, inthe context of area minimizing submanifolds and energy minimizingmaps, and in the context of various geometric flow problems.
提议DMS-0406209《几何变分中的正则性问题和几何流问题中的正则性问题》(Leon Simon和Brian White)Leon Simon计划探讨与极小子流形和能量最小化映射的奇集的结构有关的各种问题。更具体地说,Simon的目标是建立各种重数类的一阶正则性(即奇异集位于连续可微子流形的局部有限单位中),这些点附近有一个允许校准的切线柱面。这样的结果将特别适用于“顶维”奇点附近的mod-2极小值。Brian White计划研究平均曲率流的正则性,包括非唯一性和“肥化”性质。此外,他还将继续研究系数在度量组中的锥体最小化的奇异结构,以及他在二维极小曲面上的工作,重点是分支点的研究。对奇点的理解,以及奇点是如何形成的,是我们全面理解许多物理和几何现象的基本要素。例如,在宇宙学中,时空奇点(如“黑洞”)起着基础性的作用,而对几何流动问题中奇点形成的理解是哈密尔顿、佩雷尔曼等人解决瑟斯顿几何化猜想的一个关键因素。同样,在研究拓扑学和几何学中自然产生的“正则”对象时,奇点以一种非常自然和不可避免的方式出现,而对这些奇点的理解是一个绝对基本的问题。与大多数非线性现象一样,没有一个单一的通用理论适用于各种不同的背景,相反,每个不同的背景都有自己的有效技术集合,而这些技术的发展和应用是在几何变分的背景下进行的,这是本研究方案的重点。具体地说,Simon和White建议继续努力,在面积最小子流形和能量最小化映射的背景下,以及在各种几何流动问题的背景下,更全面地理解奇点及其形成方式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leon Simon其他文献

Regularity and singularity estimates on hypersurfaces minimizing parametric elliptic variational integrals
超曲面的正则性和奇异性估计最小化参数椭圆变分积分
  • DOI:
    10.1007/bf02392238
  • 发表时间:
    1977
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Richard Schoen;Leon Simon;F. Almgren
  • 通讯作者:
    F. Almgren
Minimal hypersurfaces asymptotic to quadratic cones in ℝ n+1
  • DOI:
    10.1007/bf01389267
  • 发表时间:
    1986-10-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Leon Simon;Bruce Solomon
  • 通讯作者:
    Bruce Solomon
Global estimates of holder continuity for a class of divergence-form elliptic equations

Leon Simon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leon Simon', 18)}}的其他基金

Regularity and Singularity in Geometric Variational Problems and in Geometric Flow Problems
几何变分问题和几何流问题中的正则性和奇异性
  • 批准号:
    0104049
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Regularity and Singularity in Geometric Variational Problems and in Geometric Flow Problems
几何变分问题和几何流问题中的正则性和奇异性
  • 批准号:
    9803493
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Regularity and Singularity in Geometric Variational and Flow Problems
数学科学:几何变分和流问题中的正则性和奇异性
  • 批准号:
    9504456
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Asymptotic Behavior and the SingularSet of Minimal Surfaces and Harmonic Maps
数学科学:渐近行为以及最小曲面和调和图的奇异集
  • 批准号:
    9207704
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometric Variational Problems and Related PDE Questions
数学科学:几何变分问题及相关偏微分方程问题
  • 批准号:
    9012718
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometric Variational Problems and Related PDE Questions
数学科学:几何变分问题及相关偏微分方程问题
  • 批准号:
    8703537
  • 财政年份:
    1987
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Geometric questions in the theory of Shimura varieties and applications
志村品种理论中的几何问题及应用
  • 批准号:
    RGPIN-2019-03909
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Questions in Algebraic and Geometric Combinatorics
代数和几何组合问题
  • 批准号:
    2153897
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Geometric questions in the theory of Shimura varieties and applications
志村品种理论中的几何问题及应用
  • 批准号:
    RGPIN-2019-03909
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Questions and Experiments in Geometric Combinatorics
几何组合学中的问题和实验
  • 批准号:
    1953785
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Geometric questions in the theory of Shimura varieties and applications
志村品种理论中的几何问题及应用
  • 批准号:
    RGPIN-2019-03909
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Geometric questions in the theory of Shimura varieties and applications
志村品种理论中的几何问题及应用
  • 批准号:
    RGPIN-2019-03909
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Removable Sets and Questions in Geometric Function Theory
几何函数论中的可移集和问题
  • 批准号:
    1758295
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Removable Sets and Questions in Geometric Function Theory
几何函数论中的可移集和问题
  • 批准号:
    1664807
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Gluing, Rigidity and Uniqueness Questions in Geometric Analysis
几何分析中的粘合、刚性和唯一性问题
  • 批准号:
    EP/J014206/1
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Questions in and around Geometric Group Theory
几何群论及其相关问题
  • 批准号:
    1006219
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了