Symbolic Dynamics Methods for Low Dimensional Dynamics
低维动力学的符号动力学方法
基本信息
- 批准号:0407110
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: DMS-0407110PI: Divakar ViswanathInstitution: University of Michigan Ann ArborTitle: Symbolic dynamics methods for low-dimensional dynamicsABSTRACTSymbolic dynamics is an important and central concept in the mathematical description of low-dimensional chaos. The leading principle of symbolic dynamics is the construction of symbol sequences that encode segments of trajectories. As nearby trajectories of a chaotic system diverge rapidly, even long segments of trajectories will have short symbolic codes. Furthermore, these symbolic codes explicitly indicate various recursive relationships between families of trajectories. In earlier work, the investigator used symbolic dynamics to obtain explicit plots of the fractal structure of the well-known Lorenz attractor, which was inferred by Lorenz in 1963 but was not exhibited explicitly prior to the investigator's work. The investigator develops mathematics and computational algorithms to apply the symbolic dynamics method to low dimensional Hamiltonian systems. A particular focus of this project is on physically interesting instances of the three-body problem. In particular, this project studies resonance transitions in the three-body problem with a view towards the motion of celestial bodies and spacecrafts. In collaboration with other researchers, the investigator explores new methods that apply to dissipative partial differential equations with low dimensional attractors. The investigator uses results from this project and related research to transmit the excitement of research to an interdisciplinary audience of undergraduate and graduate students.Climactic changes, weather prediction, the motion of planets and other celestial bodies, spacecraft trajectories, and the flow of hydrogen through the channels of a fuel cell, to consider but a few examples, present quite different scientific challenges. Yet all these diverse phenomena are described by the same type of mathematical objects called nonlinear differential equations. The use of mathematics leads to concepts of quite great generality that can illuminate very diverse phenomena. An example is the concept of resonance, which means that the ratio of the period of motion of one part of the system to that of another part is a simple fraction such as 1/2, 2/1, or 1/1. When two parts of a system are in resonance, the two parts interact much more strongly than otherwise leading to unexpected results, one of these unexpected results being the loss of predictability. The investigator studies resonances related to the motion of planets, satellites, and spacecrafts. The investigator develops methods that make accurate computations possible in spite of the loss of predictability. The key to these methods is a concept that utilizes the loss of predictability to give compact descriptions of changing and unpredictable phenomena. This concept is called symbolic dynamics.
提议:DMS-0407110PI:Divakar ViswanathInstitution:密歇根大学Ann Arborle标题:低维动力学的符号动力学方法摘要符号动力学是低维混沌数学描述中的一个重要而核心的概念。符号动力学的主要原理是构建对轨迹段进行编码的符号序列。随着一个混沌系统附近的轨迹迅速偏离,即使是长的轨迹段也会有短的符号代码。此外,这些符号代码明确表示轨迹系列之间的各种递归关系。在早期的工作中,研究人员使用符号动力学来获得著名的Lorenz吸引子的显式图形,这是由Lorenz在1963年推断的,但在研究人员的工作之前并没有显式展示。研究人员发展了数学和计算算法,将符号动力学方法应用于低维哈密顿系统。这个项目的一个特别的焦点是三体问题的物理有趣的例子。特别是,该项目研究了三体问题中的共振跃迁,以期实现天体和航天器的运动。与其他研究人员合作,研究人员探索了适用于具有低维吸引子的耗散偏微分方程解的新方法。研究人员利用这个项目和相关研究的结果,将研究的兴奋传递给本科生和研究生的跨学科受众。气候变化、天气预报、行星和其他天体的运动、航天器轨迹以及氢通过燃料电池通道的流动,仅举几个例子,提出了相当不同的科学挑战。然而,所有这些不同的现象都是由同一类型的数学对象描述的,称为非线性微分方程式。数学的使用导致了具有相当大普遍性的概念,这些概念可以解释非常不同的现象。一个例子是共振的概念,它意味着系统的一个部分与另一个部分的运动周期之比是一个简单的分数,如1/2、2/1或1/1。当系统的两个部分处于共振状态时,这两个部分的相互作用比其他情况下更强烈,从而导致意想不到的结果,其中一个意想不到的结果是失去可预测性。研究人员研究与行星、卫星和宇宙飞船运动有关的共振。研究人员开发了一些方法,使准确的计算成为可能,尽管失去了可预测性。这些方法的关键是一个概念,它利用可预测性的损失对变化和不可预测的现象进行紧凑的描述。这个概念被称为符号动力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Divakar Viswanath其他文献
The Dynamics of Transition to Turbulence in Plane Couette Flow
平面库埃特流向湍流转变的动力学
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Divakar Viswanath - 通讯作者:
Divakar Viswanath
Shuffling cards for blackjack, bridge, and other card games
二十一点、桥牌和其他纸牌游戏的洗牌
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Mark A. Conger;Divakar Viswanath - 通讯作者:
Divakar Viswanath
Stable manifolds and the transition to turbulence in pipe flow
稳定流形和管道流向湍流的过渡
- DOI:
10.1017/s0022112009006041 - 发表时间:
2008 - 期刊:
- 影响因子:3.7
- 作者:
Divakar Viswanath;P. Cvitanovic - 通讯作者:
P. Cvitanovic
The critical layer in pipe flow at high Reynolds number
高雷诺数管流的临界层
- DOI:
10.1098/rsta.2008.0225 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Divakar Viswanath - 通讯作者:
Divakar Viswanath
Divakar Viswanath的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Divakar Viswanath', 18)}}的其他基金
Complex Singularities in Numerical Analysis and Nonlinear Dynamics
数值分析和非线性动力学中的复杂奇点
- 批准号:
1115277 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
SCREMS: Scientific Computing and Mathematics at the University of Michigan
SCEMS:密歇根大学的科学计算和数学
- 批准号:
1026317 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
LTB: Accurate Computational Methods for Very Large Dynamical Systems
LTB:超大型动力系统的精确计算方法
- 批准号:
0715510 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
New methods to capture protein dynamics of the TSC-mTOR signalling axis.
捕获 TSC-mTOR 信号轴蛋白质动态的新方法。
- 批准号:
DE240100992 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Combining Molecular Simulations and Biophysical Methods to Characterize Conformational Dynamics of the HIV-1 Envelope Glycoprotein
结合分子模拟和生物物理方法来表征 HIV-1 包膜糖蛋白的构象动力学
- 批准号:
10749273 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative Research: Randomized Feature Methods for Modeling and Dynamics: Theory and Algorithms
协作研究:建模和动力学的随机特征方法:理论和算法
- 批准号:
2331033 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Development of the measurement, identification and quantification methods for investigating nanoplastic dynamics from terrestrial to atmospheric environments
开发用于研究从陆地到大气环境的纳米塑料动力学的测量、识别和量化方法
- 批准号:
22KJ1953 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Development & application of computational methods for the study of protein dynamics with PmHMGR as a model system
发展
- 批准号:
10607487 - 财政年份:2023
- 资助金额:
-- - 项目类别:
SCALE:Industry empowerment to multiphase fluid dynamics simulations using Artificial Intelligence & statistical methods on modern hardware architectur
规模:使用人工智能进行多相流体动力学模拟的行业授权
- 批准号:
EP/Y034686/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
IIBR Research Methods: Probing the structure, abundance, dynamics, and function of protein complexes within their cellular environment
IIBR 研究方法:探测细胞环境中蛋白质复合物的结构、丰度、动态和功能
- 批准号:
2327468 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Enabling ion Mobility Spectrometry/Mass Spectrometry Methods to Study Conformational Dynamics of Protein Systems
使用离子淌度谱/质谱方法来研究蛋白质系统的构象动力学
- 批准号:
2305173 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Development of numerical methods for simulating quantum dynamics towards the control of quantum computers
开发用于模拟量子动力学以控制量子计算机的数值方法
- 批准号:
23K13042 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists