Development and Application of Subgrid Upscaling
子网格升级的开发与应用
基本信息
- 批准号:0408489
- 负责人:
- 金额:$ 24.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator considers a physical system representing a porousmedium, such as a groundwater aquifer or a petroleum reservoir. Themovement of, e.g., a contaminant or oil over several kilometers isstrongly influenced by the properties of the intervening rock. Whatappears to us to be bulk fluid flow is actually a complex process offluid flowing through high and low permeability regions. To simulatethe flow, one generally uses a coarse computational grid. In subgridupscaling, one incorporates fine-scale processes within the coarsegrid cells through a local and easily computed subgrid technique. Theprojects objective is to obtain provably improved accuracy andcomputational efficiency. Moreover, since this technique provides agood and easily computed approximation to the fine-scale movement ofthe fluids, the technique will be adapted so that the full fine-scaleproblem itself can be solved in significantly less time. One post-doc, two graduate students, and one undergraduate studentwill be involved in the research, and educated in theinterdisciplinary environment. The work will be disseminated atinterdisciplinary meetings and in the mathematics, groundwater, andreservoir simulation literature to maximize its impact.The contamination of groundwater is one of the most seriousenvironmental problems facing the nation. Improvements to thepredictive capabilities of groundwater simulations in heterogeneousformations would have a wide-ranging impact. The engineering ofpetroleum and natural gas production uses heavily subsurfacesimulation technologies as well. The subgrid upscaling method hasshown great promise, and this proposal will further its developmentwhile promoting important educational and societal objectives.
研究者认为一个物理系统代表一个多孔介质,如地下水含水层或石油储层。 例如,几公里范围内的污染物或石油受到中间岩石性质的强烈影响。 在我们看来,流体的整体流动实际上是一个复杂的过程,流体流过高渗透率和低渗透率区域。 为了模拟流动,一般使用粗糙的计算网格。 在subgridupscaling,一个包含在coarsegrid细胞通过本地和易于计算的子网格技术的精细尺度的过程。 该项目的目标是获得可证明的提高精度和计算效率。 此外,由于这种技术提供了一个很好的和容易计算的近似精细尺度运动的流体,该技术将适应,使整个精细尺度问题本身可以解决在显着更少的时间。一名博士后,两名研究生和一名本科生将参与研究,并在跨学科的环境中接受教育。 这项工作将在跨学科会议和数学、地下水和水库模拟文献中传播,以最大限度地发挥其影响。地下水污染是国家面临的最严重的环境问题之一。 提高非均质地层中地下水模拟的预测能力将产生广泛的影响。 石油和天然气生产工程也大量使用地下模拟技术。 亚网格尺度放大方法已经显示出巨大的前景,这一建议将进一步发展,同时促进重要的教育和社会目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Todd Arbogast其他文献
Further Studies on the Self-Adaptive Theta Scheme for Conservation Laws
- DOI:
10.1007/s10915-025-02938-6 - 发表时间:
2025-05-22 - 期刊:
- 影响因子:3.300
- 作者:
Todd Arbogast;Chieh-Sen Huang;Danielle N. King - 通讯作者:
Danielle N. King
Construction of $$H({\mathrm{div}})$$ -conforming mixed finite elements on cuboidal hexahedra
- DOI:
10.1007/s00211-018-0998-7 - 发表时间:
2018-10-22 - 期刊:
- 影响因子:2.200
- 作者:
Todd Arbogast;Zhen Tao - 通讯作者:
Zhen Tao
Todd Arbogast的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Todd Arbogast', 18)}}的其他基金
Direct Finite Elements on Convex Polygons and Polyhedra
凸多边形和多面体上的直接有限元
- 批准号:
2111159 - 财政年份:2021
- 资助金额:
$ 24.4万 - 项目类别:
Standard Grant
Implicit Weighted Essentially Non-Oscillatory (WENO) Schemes for Advection-Diffusion-Reaction Systems
平流扩散反应系统的隐式加权基本非振荡 (WENO) 方案
- 批准号:
1912735 - 财政年份:2019
- 资助金额:
$ 24.4万 - 项目类别:
Standard Grant
Simulation of Multiphase Flow and Transport in the Partially Molten Mantle
部分熔融地幔中的多相流和输运模拟
- 批准号:
1720349 - 财政年份:2017
- 资助金额:
$ 24.4万 - 项目类别:
Standard Grant
Numerical algorithms for nonlinear subsurface flow and transport
非线性地下流动和输送的数值算法
- 批准号:
1418752 - 财政年份:2014
- 资助金额:
$ 24.4万 - 项目类别:
Continuing Grant
Fully Locally Conservative Characteristic Methods for Transport Problems
传输问题的完全局部保守特征方法
- 批准号:
0713815 - 财政年份:2007
- 资助金额:
$ 24.4万 - 项目类别:
Standard Grant
CMG Research: Multi-scale Flow and Transport Modeling of Large-vug Cretaceous Carbonates
CMG 研究:大型溶洞白垩系碳酸盐岩的多尺度流动和输运模拟
- 批准号:
0417431 - 财政年份:2004
- 资助金额:
$ 24.4万 - 项目类别:
Standard Grant
Modeling Flow in Porous Media with Vugular Meso-scale Heterogeneities
具有脆弱介观尺度异质性的多孔介质中的流动建模
- 批准号:
0074310 - 财政年份:2000
- 资助金额:
$ 24.4万 - 项目类别:
Continuing Grant
A Posteriori Error Estimation and Up-Scaling for Mixed Finite Element Methods
混合有限元方法的后验误差估计和放大
- 批准号:
9707015 - 财政年份:1997
- 资助金额:
$ 24.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
8905505 - 财政年份:1989
- 资助金额:
$ 24.4万 - 项目类别:
Fellowship Award
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 24.4万 - 项目类别:
Fellowship
Sustainable solution for cooling application
冷却应用的可持续解决方案
- 批准号:
10089491 - 财政年份:2024
- 资助金额:
$ 24.4万 - 项目类别:
Collaborative R&D
Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
- 批准号:
10089539 - 财政年份:2024
- 资助金额:
$ 24.4万 - 项目类别:
Collaborative R&D
Wearable Electronic Skins for Biomedical Application
用于生物医学应用的可穿戴电子皮肤
- 批准号:
2906949 - 财政年份:2024
- 资助金额:
$ 24.4万 - 项目类别:
Studentship
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 24.4万 - 项目类别:
Fellowship
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316612 - 财政年份:2024
- 资助金额:
$ 24.4万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316615 - 财政年份:2024
- 资助金额:
$ 24.4万 - 项目类别:
Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
- 批准号:
2327466 - 财政年份:2024
- 资助金额:
$ 24.4万 - 项目类别:
Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
- 批准号:
2350128 - 财政年份:2024
- 资助金额:
$ 24.4万 - 项目类别:
Standard Grant
GOALI: Understanding granulation using microbial resource management for the broader application of granular technology
目标:利用微生物资源管理了解颗粒化,以实现颗粒技术的更广泛应用
- 批准号:
2227366 - 财政年份:2024
- 资助金额:
$ 24.4万 - 项目类别:
Standard Grant