Collaborative Research: The Role of Curvature in Combinatorics

合作研究:曲率在组合学中的作用

基本信息

  • 批准号:
    0414046
  • 负责人:
  • 金额:
    $ 16.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-01-01 至 2005-07-31
  • 项目状态:
    已结题

项目摘要

DMS-0101506Jonathan McCammondIn recent years ideas from geometry have driven some of the most exciting developments in combinatorics such as Gromov hyperbolic groups and CAT(0) spaces, combinatorial Morse theory, combinatorial Ricci curvature, combinatorial differential manifolds and matroid bundles. The central unifying notion in geometry is that of curvature. Now, through these diversegeometric and combinatorial theories, curvature is emerging as a powerful tool and fundamental unifying concept in combinatorics as well. This Focused Research Group will explore some of the specific notions of combinatorialcurvature driving current combinatorial work, and also the role of curvature as the basis for a coherent geometric vision of combinatorics itself.The notion of curvature has been one of the grand unifying concepts in geometry and physics for well over a century. For example, Gauss, the originator of our modern understanding of curvature, showed that Euclidean geometry was distinguished from other geometries as being the geometry of a space with zero curvature. As an application he showed that it isprecisely the curvature of the surface of the Earth which makes it impossible to draw a map of the Earth's surface (on a flat piece of paper) that accurately portrays all lengths and angles.Riemann generalized Gauss's work to smooth spaces of higher dimensions, and Einstein observed that Riemannian geometrywas precisely the right setting in which to describe his theory of general relativity (in which the curvature of the universe is the result of gravitational forces). Partly as a result of Einstein's work, the last century saw an intensive investigation into the curvature of smooth spaces.Combinatorics, roughly defined, is the study of objects which can be described by a finite amount of information. This is precisely the mathematics that computers can do. This type of mathematics seems far removed from the geometric investigations of Gauss, Riemann and countless others. However, there is a growing collection of combinatorial phenomena which can best be viewed as being finite analogues of facts about the curvature of smooth spaces. The goal of this proposal is to come to acoherent understanding of curvature as a combinatorial notion. In addition, bringing together researchers from a variety of mathematical disciplines, we wish to bridge the chasms between geometry, combinatorics, algebra and topology, using curvature as the unifying theme.
DMS-0101506乔纳森McCammond在最近几年的想法,从几何已经推动了一些最令人兴奋的发展,组合,如格罗莫夫双曲群和CAT(0)空间,组合莫尔斯理论,组合里奇曲率,组合微分流形和拟阵丛。几何学中的中心统一概念是曲率。现在,通过这些不同的几何和组合理论,曲率正在成为一个强大的工具和基本的统一概念,在组合学以及。 这个重点研究小组将探讨一些具体的概念combinatorialcurvature驱动当前的组合工作,也是曲率的作用,作为一个连贯的几何视觉组合本身的基础。曲率的概念一直是一个伟大的统一概念,在几何和物理超过一个世纪。 例如,高斯,我们的现代理解曲率的创始人,表明欧几里德几何是区别于其他几何作为几何空间的曲率为零。作为一个应用,他表明,正是地球表面的曲率使得不可能绘制地球表面的地图(在一张平的纸上)精确地描绘出所有的长度和角度。黎曼将高斯的工作推广到更高维的光滑空间,爱因斯坦观察到黎曼几何正是描述他的广义相对论的正确背景爱因斯坦观察到黎曼几何正是描述他的广义相对论的正确背景(宇宙的曲率是引力的结果)。部分由于爱因斯坦的工作,上个世纪人们对光滑空间的曲率进行了深入的研究。粗略地定义,组合数学是研究可以用有限的信息量来描述的对象。 这正是计算机可以做的数学。 这种类型的数学似乎远离几何调查高斯,黎曼和无数其他人。 然而,有越来越多的组合现象,可以最好地被视为是有限的类似物的事实曲率的光滑空间。 这个建议的目的是要达到一致的理解曲率作为一个组合的概念。此外,汇集来自各种数学学科的研究人员,我们希望弥合几何,组合学,代数和拓扑之间的鸿沟,使用曲率作为统一的主题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jon McCammond其他文献

Dynamics groups of asynchronous cellular automata
异步元胞自动机的动力学群
  • DOI:
    10.1007/s10801-010-0231-y
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Macauley;Jon McCammond;H. Mortveit
  • 通讯作者:
    H. Mortveit
The Length Spectrum of a Compact Constant Curvature Complex is Discrete
  • DOI:
    10.1007/s10711-006-9065-0
  • 发表时间:
    2006-05-10
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Noel Brady;Jon McCammond
  • 通讯作者:
    Jon McCammond
Normal Forms for Free Aperiodic Semigroups
自由非周期半群的范式
Bounding edge degrees in triangulated 3-manifolds
三角 3 流形中的边界边度
  • DOI:
    10.1090/s0002-9939-03-06981-8
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Brady;Jon McCammond;J. Meier
  • 通讯作者:
    J. Meier
Coherence, local quasiconvexity, and the perimeter of 2-complexes
相干性、局部拟凸性和 2-复形的周长

Jon McCammond的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jon McCammond', 18)}}的其他基金

Discrete and continuous geometry in group theory
群论中的离散和连续几何
  • 批准号:
    0805716
  • 财政年份:
    2008
  • 资助金额:
    $ 16.03万
  • 项目类别:
    Standard Grant
Geometric Group Theory via Geometric Combinatorics
通过几何组合的几何群论
  • 批准号:
    0405783
  • 财政年份:
    2004
  • 资助金额:
    $ 16.03万
  • 项目类别:
    Standard Grant
Collaborative Research: The Role of Curvature in Combinatorics
合作研究:曲率在组合学中的作用
  • 批准号:
    0101506
  • 财政年份:
    2001
  • 资助金额:
    $ 16.03万
  • 项目类别:
    Standard Grant
CombinaTexas: A Combinatorics Conference for the South-Central U.S.
CombinaTexas:美国中南部组合学会议
  • 批准号:
    0070834
  • 财政年份:
    2000
  • 资助金额:
    $ 16.03万
  • 项目类别:
    Standard Grant
Geometric Group Theory
几何群论
  • 批准号:
    9971682
  • 财政年份:
    1999
  • 资助金额:
    $ 16.03万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315700
  • 财政年份:
    2024
  • 资助金额:
    $ 16.03万
  • 项目类别:
    Standard Grant
LTREB: Collaborative Research: Long-term changes in peatland C fluxes and the interactive role of altered hydrology, vegetation, and redox supply in a changing climate
LTREB:合作研究:泥炭地碳通量的长期变化以及气候变化中水文、植被和氧化还原供应变化的相互作用
  • 批准号:
    2411998
  • 财政年份:
    2024
  • 资助金额:
    $ 16.03万
  • 项目类别:
    Continuing Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315699
  • 财政年份:
    2024
  • 资助金额:
    $ 16.03万
  • 项目类别:
    Standard Grant
Collaborative Research: The role of temporally varying specific storage on confined aquifer dynamics
合作研究:随时间变化的特定存储对承压含水层动态的作用
  • 批准号:
    2242365
  • 财政年份:
    2024
  • 资助金额:
    $ 16.03万
  • 项目类别:
    Standard Grant
Collaborative Research: Determining the role of uranium(V) in the global uranium cycle by characterizing burial mechanisms in marine sinks
合作研究:通过表征海洋汇埋藏机制确定铀(V)在全球铀循环中的作用
  • 批准号:
    2322205
  • 财政年份:
    2024
  • 资助金额:
    $ 16.03万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Role of the Overturning Circulation in Carbon Accumulation (ROCCA)
NSFGEO-NERC:合作研究:翻转环流在碳积累中的作用(ROCCA)
  • 批准号:
    2400434
  • 财政年份:
    2024
  • 资助金额:
    $ 16.03万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315697
  • 财政年份:
    2024
  • 资助金额:
    $ 16.03万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315696
  • 财政年份:
    2024
  • 资助金额:
    $ 16.03万
  • 项目类别:
    Standard Grant
Collaborative Research: Sharing Scientist Role Model Stories to Improve Equity and Success in Undergraduate STEM Education
合作研究:分享科学家榜样故事,以提高本科 STEM 教育的公平性和成功率
  • 批准号:
    2337064
  • 财政年份:
    2024
  • 资助金额:
    $ 16.03万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the impacts of an ongoing megadrought: Synthesizing the role of soil moisture in driving ecosystem fluxes from site to regional scales
合作研究:了解正在进行的特大干旱的影响:综合土壤湿度在驱动生态系统通量从场地到区域尺度方面的作用
  • 批准号:
    2331163
  • 财政年份:
    2024
  • 资助金额:
    $ 16.03万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了