ITR: Collaborative Research: (ACS+NHS)-(dmc+soc): Machine Learning for Sequences and Structured Data: Tools for Non-Experts

ITR:协作研究:(ACS NHS)-(dmc soc):序列和结构化数据的机器学习:非专家工具

基本信息

  • 批准号:
    0428193
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-01 至 2008-08-31
  • 项目状态:
    已结题

项目摘要

Sequential and graph-structured data arise naturally in a wide variety of scientific, engineering, and intelligence problems, such as handwriting and speech recognition, text mining, gene finding, and network analysis. While researchers have recently made significant progress on machine learning methods for processing structured data, these methods are much less accessible to scientists, engineers, and analysts than the better understood statistical learning techniques of classification and regression.This project is researching methods to advance the state of the art in machine learning for structured data, building on recent work in conditional random fields and weighted transducers. The project is also developing a software toolkit to make the results of these advances accessible to researchers working in a wide range of disciplines and application domains. The toolkit will enable users to define, train, and apply models for structured data without requiring advanced expertise in machine learning. The functionality of the toolkit will include methods for specifying features relevant to an application, automatically selecting the most relevant features, adjusting parameters to optimize suitable training objectives, and combining models that pertain to different facets of an application.The software, which will be freely distributed, will be tested with selected users in several application domains, and be carefully documented. The project will thus provide the scientific and engineering community with the first generally usable tool for learning from structured data, serving a role that is parallel to that of the more standard tools for classification and regression that are already widely used.-
顺序和图形结构的数据自然出现在各种各样的科学、工程和智能问题中,例如手写和语音识别、文本挖掘、基因发现和网络分析。虽然研究人员最近在处理结构化数据的机器学习方法方面取得了重大进展,但与更好地理解分类和回归的统计学习技术相比,这些方法对科学家、工程师和分析师来说要难得多。该项目正在研究方法,以促进结构化数据机器学习的最新水平,建立在条件随机场和加权换能器的最新工作基础上。该项目还在开发一个软件工具包,以便在广泛的学科和应用领域工作的研究人员能够获得这些进展的成果。该工具包将使用户能够定义、训练和应用结构化数据的模型,而不需要机器学习方面的高级专业知识。该工具包的功能将包括指定与应用程序相关的功能、自动选择最相关的功能、调整参数以优化合适的培训目标以及结合与应用程序不同方面有关的模型的方法。该软件将免费分发,将在几个应用程序领域中与选定的用户进行测试,并进行仔细的文档记录。因此,该项目将为科学界和工程界提供第一个从结构化数据中学习的通用工具,其作用可与已经广泛使用的更标准的分类和回归工具相媲美。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fernando Pereira其他文献

IEEE Signal Processing Society Flagship Conferences Over the Past 10 Years
过去 10 年 IEEE 信号处理学会旗舰会议
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    A. Pérez;Fernando Pereira;C. Regazzoni;Caroline Johnson
  • 通讯作者:
    Caroline Johnson
An Introduction to the JPEG Fake Media Initiative
JPEG 假媒体倡议简介
Impacto da covid-19 em idosos institucionalizados em estruturas residenciais para pessoas idosas
covid-19 对居民住宅机构的影响
JPEG Pleno: Providing representation interoperability for holographic applications and devices
JPEG Pleno:为全息应用和设备提供表示互操作性
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    P. Schelkens;T. Ebrahimi;Antonin Gilles;P. Gioia;Kwan‐Jung Oh;Fernando Pereira;C. Perra;António M. G. Pinheiro
  • 通讯作者:
    António M. G. Pinheiro
Capacidade Para a Gestão do Portfólio de Projetos Uma Abordagem Teórica
Uma Abordagem Teórica 项目组合设计能力
  • DOI:
    10.18803/capsi.v13.178-203
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    10.3
  • 作者:
    Fernando Pereira;C. Pedron;Mário Maciel;Caldeira
  • 通讯作者:
    Caldeira

Fernando Pereira的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
  • 批准号:
    1404694
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR-SCOTUS: A Resource for Collaborative Research in Speech Technology, Linguistics, Decision Processes, and the Law
ITR-SCOTUS:语音技术、语言学、决策过程和法律合作研究的资源
  • 批准号:
    1139735
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
  • 批准号:
    0963973
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
  • 批准号:
    1018072
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR Collaborative Research: A Reusable, Extensible, Optimizing Back End
ITR 协作研究:可重用、可扩展、优化的后端
  • 批准号:
    0838899
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
  • 批准号:
    0833849
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
  • 批准号:
    0808419
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR: Collaborative Research - ASE - (sim+dmc): Image-based Biophysical Modeling: Scalable Registration and Inversion Algorithms and Distributed Computing
ITR:协作研究 - ASE - (sim dmc):基于图像的生物物理建模:可扩展配准和反演算法以及分布式计算
  • 批准号:
    0849301
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR: Collaborative Research: Modeling and Display of Haptic Information for Enhanced Performance of Computer-Integrated Surgery
ITR:协作研究:触觉信息建模和显示,以提高计算机集成手术的性能
  • 批准号:
    0711040
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ITR Collaborative Research: GEON: A Research Project to Create Cyberinfrastructure for the Geosciences
ITR 合作研究:GEON:为地球科学创建网络基础设施的研究项目
  • 批准号:
    0724265
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了