Computational Topology for Surface Approximation

表面近似的计算拓扑

基本信息

  • 批准号:
    0429477
  • 负责人:
  • 金额:
    $ 25.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-15 至 2008-08-31
  • 项目状态:
    已结题

项目摘要

This research examines broad issues of guaranteeing that the essential shape of an object is preserved during algorithms used in engineering design, animation and molecular modeling. While geometric characteristics such as surface area and volume can be objectively measured and compared for two objects, other shape characterizations, such as the distinction between a garden hose and the same hose tied into a knot, are more subtle and require the methods of this research. Surprisingly, these distinctions are not easy for present day algorithms and difficulties in detecting these differences has been estimated to cost billions of dollars annually in lost productivity in the aeronautical and automotive industries. This research is an interdisciplinary investigation between computer scientists and mathematicians with a corresponding educational emphasis upon introducing the next generation of scientists to a holistic perspective that combines theory with novel engineering and life science applications. The applications to molecular modeling are expected to be attractive to the many women in the biological sciences and thereby increase the participation of women in the computational and mathematical sciences.This research integrates new topological constraints and numerical error bounds into geometric approximation algorithms, defining when a surface approximation is in the same topological equivalence class as the original surface. While surface approximation is a classical mathematical topic, the issue of topological equivalence has typically been left to human inspection. The novel approach of this research is the development of the theory and practice to create computationally tractable algorithms that ensure topological equivalence for a rich class of surface approximation techniques. The creation of appropriate applied mathematics to eliminate any direct algorithmic dependence upon computation of the medial axis significantly enriches the class of robust approximation algorithms delivering verifiable topology. Another major innovation is the comprehensive consideration of geometric models composed from bounded surface patches. This perspective eliminates a prevailing, but unrealistic theoretical hypothesis that geometric models have only a single bounding surface. The additional subtleties rely upon new numerical approximations along the boundaries of each constituent patch.
本研究探讨了在工程设计、动画和分子建模中使用的算法中保证物体基本形状的广泛问题。虽然可以客观地测量和比较两个物体的几何特征,如表面积和体积,但其他形状特征,如花园软管和绑成结的同一软管之间的区别,则更加微妙,需要本研究的方法。令人惊讶的是,这些区别对于目前的算法来说并不容易,而且据估计,检测这些差异的困难每年会导致航空和汽车行业损失数十亿美元的生产力。这项研究是计算机科学家和数学家之间的跨学科研究,其相应的教育重点是向下一代科学家介绍一个将理论与新颖的工程和生命科学应用相结合的整体视角。分子建模的应用预计将吸引许多从事生物科学的妇女,从而增加妇女在计算和数学科学中的参与。该研究将新的拓扑约束和数值误差边界集成到几何逼近算法中,定义曲面逼近与原始曲面在同一拓扑等价类中的时间。虽然表面近似是一个经典的数学主题,但拓扑等价问题通常留给人类检查。本研究的新方法是理论和实践的发展,以创建计算易于处理的算法,确保丰富的表面逼近技术的拓扑等价。创建适当的应用数学来消除对中轴线计算的任何直接算法依赖,极大地丰富了提供可验证拓扑的鲁棒近似算法的类别。另一个主要的创新是全面考虑由有界表面斑块组成的几何模型。这种观点消除了一个流行的,但不切实际的理论假设,即几何模型只有一个边界面。额外的微妙之处依赖于沿着每个组成块的边界的新的数值近似。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Peters其他文献

Secure Distributed Computation on Private Inputs
对私有输入进行安全分布式计算
  • DOI:
    10.1007/978-3-319-30303-1_2
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Geoffroy Couteau;Thomas Peters;D. Pointcheval
  • 通讯作者:
    D. Pointcheval
Correction to: Long-Term Effects of Laparoscopic Sleeve Gastrectomy: What Are the Results beyond 10 Years?
  • DOI:
    10.1007/s11695-021-05460-4
  • 发表时间:
    2021-05-10
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Marko Kraljević;Vanessa Cordasco;Romano Schneider;Thomas Peters;Marc Slawik;Bettina Wölnerhanssen;Ralph Peterli
  • 通讯作者:
    Ralph Peterli
On L-spaces and non left-orderable 3-manifold groups
关于 L 空间和非左序 3 流形群
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Peters
  • 通讯作者:
    Thomas Peters
最大正則連結部分グラフ問題のパラメータ化計算量
最大正则连通子图问题的参数化复杂度
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nuttapong Attrapadung;Benoit Libert;Thomas Peters;江藤宏
  • 通讯作者:
    江藤宏
Interdependence of tumor necrosis factor, prostaglandin E2, and protein synthesis in lipopolysaccharide-exposed rat Kupffer cells.
脂多糖暴露的大鼠 Kupffer 细胞中肿瘤坏死因子、前列腺素 E2 和蛋白质合成的相互依赖性。
  • DOI:
    10.1111/j.1432-1033.1990.tb19161.x
  • 发表时间:
    1990
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Peters;Ulrich Karck;Karl Decker
  • 通讯作者:
    Karl Decker

Thomas Peters的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Peters', 18)}}的其他基金

EAGER: Visualization of Protein Folding for Nano-Machine Design
EAGER:纳米机器设计中蛋白质折叠的可视化
  • 批准号:
    1053077
  • 财政年份:
    2010
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
SBIR Phase I: Topologically Encoded Animation (TEA) for Visual Effects in the Digital Arts
SBIR 第一阶段:用于数字艺术视觉效果的拓扑编码动画 (TEA)
  • 批准号:
    0810023
  • 财政年份:
    2008
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Computational Topology Workshop -- Six Years and Growing
计算拓扑研讨会——六年并不断成长
  • 批准号:
    0533232
  • 财政年份:
    2005
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
SGER: Computational Topology for Surface Reconstruction
SGER:表面重建的计算拓扑
  • 批准号:
    0226504
  • 财政年份:
    2002
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
I-TANGO: Intersections --- Topology, Accuracy and Numerics for Geometric Objects (in Computer Aided Design)
I-TANGO:交叉点 --- 几何对象的拓扑、精度和数值(计算机辅助设计)
  • 批准号:
    0138098
  • 财政年份:
    2002
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
Integrating Topology and Numerics at CAD Interfaces
在 CAD 界面上集成拓扑和数值
  • 批准号:
    9985802
  • 财政年份:
    2000
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
RIA: Simultaneous Modeling of Features and Design Interdependencies to Support Computer-Integrated Engineeringvia Object-Oriented Software Engineering
RIA:通过面向对象的软件工程对功能和设计相关性进行同步建模以支持计算机集成工程
  • 批准号:
    9308346
  • 财政年份:
    1993
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Topology of Kaehler Manifolds, Surface Bundles, and Outer Automorphism Groups
凯勒流形、表面丛和外自同构群的拓扑
  • 批准号:
    2401403
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2106461
  • 财政年份:
    2021
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC CORE: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC CORE:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2107530
  • 财政年份:
    2021
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC CORE: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC CORE:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2152085
  • 财政年份:
    2021
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Topology of Kaehler Manifolds, Surface Bundles, and Outer Automorphism Groups
凯勒流形、表面丛和外自同构群的拓扑
  • 批准号:
    2052801
  • 财政年份:
    2020
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Topology of thermocapillary-driven convection and induced coherent structures by low-Stokes-number particles in closed system with free surface
自由表面封闭系统中热毛细管驱动对流和低斯托克斯数粒子诱导相干结构的拓扑
  • 批准号:
    20K20977
  • 财政年份:
    2020
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Low-Dimensional and Contact Topology of Links of Surface Singularities
表面奇点链接的低维接触拓扑
  • 批准号:
    1906260
  • 财政年份:
    2019
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
Topology of Kaehler Manifolds, Surface Bundles, and Outer Automorphism Groups
凯勒流形、表面丛和外自同构群的拓扑
  • 批准号:
    1906269
  • 财政年份:
    2019
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Fermi Surface Topology and the Superconducting Proximity Effect
费米表面拓扑和超导邻近效应
  • 批准号:
    1709987
  • 财政年份:
    2017
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了