Exploring New Geometry by Touching, Seeing, and Feeling

通过触摸、观看和感觉探索新几何

基本信息

  • 批准号:
    0430730
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-01 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

The understanding of geometric shapes in everyday life combines visual impressions, tactile sensation, and their unification in the process of seeing something and reaching out to touch it to determine its physical properties, which may convey new information. Interactive computer graphics systems can be combined with 3D-touch-responsive (haptic) interfaces to permit not only the simulation of our familiar 3D world, but also the extension of our available sensations to additional dimensions and unfamiliar geometric objects by using the abstract power of computer modeling.This research focuses on exploiting interactive graphics combined with haptics to develop new methods for investigating geometric structures whose understanding is beyond the normal capabilities of the unaided human. Results will be made available in the form of pedagogical animations as well as the software environments used to create them. Typical problems include the direct manipulation and study of deformable volumes resulting when a 3D knot is removed from the solid block of space it lives in, leaving the knot complement, and the exploration of the intricate collision-free deformations of surfaces in 4D space that are essential for studying the properties of functions of two complex variables.The anticipated outcome of pursuing such approaches will be to enhance human capabilities and intuition pertaining to specific challenging geometric visualization problems, to provide methods enabling the discovery of scientific questions related to complex geometric structures that might not otherwise have been asked, and ultimately to advance the entire concept of empowering human understanding using computer-based technology.
日常生活中对几何形状的理解结合了视觉印象、触觉感受,以及它们在看到某物并伸手触摸它以确定其物理性质的过程中的统一,这可能会传达新的信息。 交互式计算机图形系统可以与3D触摸响应(触觉)界面相结合,不仅允许模拟我们熟悉的3D世界,本研究的重点是利用交互式图形学与触觉学相结合的方法,开发研究几何结构的新方法,理解力超出了人类的正常能力。 结果将以教学动画的形式以及用于创建这些动画的软件环境提供。典型的问题包括直接操纵和研究当3D结从它所处的空间的固体块中移除时产生的可变形体积,留下结的补充,以及对复杂碰撞的探索自由变形的表面在4D空间是必不可少的研究性质的两个复杂的变量。预期的结果,追求这样的方法将提高人类的能力和直觉有关的具体挑战几何可视化问题,提供方法,使科学问题的发现有关的复杂几何结构,否则可能不会被问到,并最终推进整个概念,使人类的理解使用计算机为基础的技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Hanson其他文献

The Role of Home Spirometry Monitoring of FEV<sub>1</sub> in Early Detection of Acute Rejection and Other Adverse Events in Lung Transplant Patients
  • DOI:
    10.1378/chest.1386687
  • 发表时间:
    2012-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kanae Mukai;Cassie Kennedy;Darrell Schroeder;Carl Mottram;Kenneth Parker;John Scott;Sheila Alrick;Andrew Hanson;Paul Scanlon
  • 通讯作者:
    Paul Scanlon
The $10.10 Minimum Wage Proposal: An Evaluation across States
  • DOI:
    10.1007/s12122-014-9190-8
  • 发表时间:
    2014-10-05
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Andrew Hanson;Zackary Hawley
  • 通讯作者:
    Zackary Hawley
Safety regulation in professional football: Empirical evidence of intended and unintended consequences
  • DOI:
    10.1016/j.jhealeco.2017.01.004
  • 发表时间:
    2017-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Hanson;Nicholas A. Jolly;Jeremy Peterson
  • 通讯作者:
    Jeremy Peterson
The impact of interstate highways on land use conversion
  • DOI:
    10.1007/s00168-013-0564-2
  • 发表时间:
    2013-04-23
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Chris Mothorpe;Andrew Hanson;Kurt Schnier
  • 通讯作者:
    Kurt Schnier
Debit Card Incentives and Consumer Behavior: Evidence Using Natural Experiment Methods
  • DOI:
    10.1007/s10693-020-00342-9
  • 发表时间:
    2020-08-27
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Nicholas Clerkin;Andrew Hanson
  • 通讯作者:
    Andrew Hanson

Andrew Hanson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Hanson', 18)}}的其他基金

Collaborative Research: Metabolite damage - A stumbling block for synthetic biology
合作研究:代谢物损伤——合成生物学的绊脚石
  • 批准号:
    1611711
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The B Vitamin/Cofactor Network: Command and Control of Metabolism in Changing Conditions
B 族维生素/辅因子网络:在变化的条件下指挥和控制代谢
  • 批准号:
    1444202
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Metabolite repair - Uncovering the hidden support system for metabolic networks
合作研究:代谢修复——揭示代谢网络隐藏的支持系统
  • 批准号:
    1153413
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Comparative Genomics-driven Discovery of Maize Metabolic Functions
比较基因组学驱动的玉米代谢功能发现
  • 批准号:
    1025398
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Arabidopsis 2010: Novel Folate-Related Proteins Shared by Plants and Prokaryotes
拟南芥 2010:植物和原核生物共有的新型叶酸相关蛋白
  • 批准号:
    0839926
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Orogen Hinterland Evolution: Testing Hypotheses using the Cretaceous to Eocene Stratigraphic Record in Eastern Nevada, USA
造山带腹地演化:利用美国内华达州东部白垩纪至始新世地层记录检验假设
  • 批准号:
    0610103
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Folate Synthesis, Turnover, and Engineering in Plants
植物中叶酸的合成、周转和工程
  • 批准号:
    0443709
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Visualizing Complex Projective Spaces and their Applications
复杂射影空间的可视化及其应用
  • 批准号:
    0204112
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Folate Synthesis, Catabolism, and Engineering in Plants
植物中叶酸的合成、分解代谢和工程
  • 批准号:
    0129944
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Arabidopsis 2010: Collaborative Research: Assigning Gene Function in the Arabidopsis One-Carbon Metabolism Network
拟南芥 2010:合作研究:分配拟南芥一碳代谢网络中的基因功能
  • 批准号:
    0114117
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Differential geometry and integrable systems: exploiting new links
微分几何和可积系统:利用新的联系
  • 批准号:
    23H00083
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
New Foundations for Algebraic Geometry
代数几何的新基础
  • 批准号:
    DE230100303
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
A New Pipeline for Detailed Large Scale Geometry Acquisition and Analysis
用于详细的大规模几何采集和分析的新流程
  • 批准号:
    RGPIN-2021-03477
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
New connections between Fractal Geometry, Harmonic Analysis and Ergodic Theory
分形几何、调和分析和遍历理论之间的新联系
  • 批准号:
    RGPIN-2020-04245
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
New connections between Fractal Geometry, Harmonic Analysis and Ergodic Theory
分形几何、调和分析和遍历理论之间的新联系
  • 批准号:
    RGPIN-2020-04245
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
New Frontiers of Algebraic Geometry
代数几何新领域
  • 批准号:
    2101726
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
New methods for variational problems in Riemannian geometry
黎曼几何中变分问题的新方法
  • 批准号:
    RGPIN-2017-06068
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
New Connections between Arithmetic Geometry and Computation
算术几何与计算之间的新联系
  • 批准号:
    534834-2019
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A new approach to Generalized Kahler geometry and the category of branes.
广义卡勒几何和膜类别的新方法。
  • 批准号:
    532962-2019
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了